\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9^2+12^2}=15\left(cm\right)\)
\(BC=BH+HC=9+16=25\left(cm\right)\)
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{25^2-20^2}=15\left(cm\right)\)
Áp dụng định lý pitago vào tam giác vuông ABH, có:
\(AB^2=BH^2+AH^2\)
\(\rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
Ta có :
BC = BH + HC
=> BC = 9 + 16
=> BC = 25 (cm)
Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+BC^2\) (định lí Py - ta - go)
=> \(25^2=AB^2+20^2\)
=> \(AB^2=225\)
=> AB = 15 (cm)
Xét Δ ABH vuông tại H, có :
\(AB^2=BH^2+AH^2\) (định lí Py - ta - go)
=> \(15^2=9^2+AH^2\)
=> \(AH^2=144\)
=> AH = 12 (cm)