Cho tam giác vuông cân ABC có A B = A C = a 2 và hình chữ nhật MNPQ với MQ=2MN được xếp chồng lên nhau sao cho M, N lần lượt là trung điểm của AB, AC (như hình vẽ). Tính thể tích V của vật thể tròn xoay khi quay mô hình trên quanh trục AI, với I là trung điểm PQ.
![]()

![]()
![]()
Cho nửa đường tròn đường kính AB = 2R và điểm C thay đổi trên nửa đường tròn đó, đặt α = C A B ⏞ và gọi H là hình chiếu vuông góc của C lên AB . Tìm α sao cho thể tích vật thể tròn xoay tạo thành khi quay tam giác ACH quanh trục AB đạt giá trị lớn nhất.
![]()
![]()
![]()
![]()
Cho nửa đường tròn đường kính AB=2R và điểm C thay đổi trên nửa đường tròn đó, đặt α = C A B ^ và gọi H là hình chiếu vuông góc của C lên AB. Tìm α sao cho thể tích vật thể tròn xoay tạo thành khi quay tam giác ACH quanh trục AB đạt giá trị lớn nhất.
![]()
![]()
![]()
![]()
Cho hình vuông ABCD có cạnh bằng 1m. Gọi M là trung điểm của AB, N thuộc cạnh BC thỏa mãn NC=2NB. Gọi V là thể tích khối tròn xoay khi quay đa giác ADCNM quanh trục BC. Tính V.
![]()
![]()
![]()
![]()
Cho hình chữ nhật ABCD và nửa đường tròn đường kính AB như hình vẽ. Gọi M, N lần lượt là trung điểm của AB, CD. Biết AB = 4,AD = 7. Tính thể tích V của vật thể tròn xoay khi quay mô hình trên quanh trục MN.





Cho hình chóp tam giác S. ABC có đáy ABC là tam giác đều cạnh a, SA=a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A. BCNM bằng:
A. a 3 3 12
B. a 3 3 48
C. a 3 3 24
D. a 3 3 16
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCNM bằng

A. V = 3 a 3 3 50
B. V = 9 a 3 3 50
C. V = 8 a 3 3 75
D. V = 8 a 3 3 25
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA=2a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCNM bằng
![]()
![]()
![]()
![]()
Cho đường tròn (C) có tâm I, bán kính R = a . Gọi M là điểm nằm ngoài (C) và I M = a 3 ; A là điểm thuộc (C) và MA tiếp xúc với (C); H là hình chiếu của A trên đường thẳng IM. Tính theo a thể tích V của khối tròn xoay tạo bởi hình tam giác MAH quay xung quanh trục IM



![]()