Chọn D
Thể tích khối chóp S. ABC là:
Do SA=AB=AC=a nên các tam giác SAC, SAB cân tại A.
Theo đề bài M, N là hình chiếu của A trên SB, SC nên M, N lần lượt là trung điểm SB, SC.
Khi đó:
Vậy thể tích khối chóp A. BCNM là:
Chọn D
Thể tích khối chóp S. ABC là:
Do SA=AB=AC=a nên các tam giác SAC, SAB cân tại A.
Theo đề bài M, N là hình chiếu của A trên SB, SC nên M, N lần lượt là trung điểm SB, SC.
Khi đó:
Vậy thể tích khối chóp A. BCNM là:
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCNM bằng
A. V = 3 a 3 3 50
B. V = 9 a 3 3 50
C. V = 8 a 3 3 75
D. V = 8 a 3 3 25
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA=2a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCNM bằng
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a và SA ⊥ (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Tính 50 V 3 a 3 , với V là thể tích khối chóp A.BCMN
A. 10
B. 12
C. 9
D. 11
Cho hình chóp S. ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy. Gọi M là trung điểm BC. Mặt phẳng (P) đi qua A và vuông góc với SM cắt SB, SC lần lượt tại E, F. Biết V S . A E F = 1 4 V S . A B C . Tính thể tích V của khối chóp S. ABC.
A. a 3 2
B. a 3 8
C. 2 a 3 5
D. a 3 12
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, A B = a , B C = 2 a .Cạnh bên SA vuông góc với đáy và SA=a. Gọi M, N lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích V của khối chóp S.AMN.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, BC=a. Cạnh bên SA vuông góc với mặt phẳng (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB và SC. Tính thể tích của khối cầu tạo bởi mặt cầu ngoại tiếp hình chóp A.HKB.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC=a. Cạnh bên SA vuông góc với đáy (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên cạnh bên SB và SC. Tính thể tích khối cầu tạo bởi mặt cầu ngoại tiếp hình chóp A.HKB là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC =a. Cạnh bên SA vuông góc với đáy (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên cạnh bên SB và SC. Tính thể tích khối cầu tạo bởi mặt cầu ngoại tiếp hình chóp A.HKB là
A . πa 3 2
B . 2 πa 3 3
C . 2 πa 3
D . πa 3 6
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh B, AB = a, SA = 2a và SA vuông góc với mặt phẳng đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối tứ diện S.AHK.
A. V = 4 a 3 15
B. V = 8 a 3 45
C. V = 8 a 3 15
D. V = 4 a 3 5