a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có
BE chung
\(\widehat{ABE}=\widehat{KBE}\)
Do đó: ΔABE=ΔKBE
b: Ta có:ΔABE=ΔKBE
nên \(\widehat{AEB}=\widehat{KEB}\)
hay EB là tia phân giác của góc AEK
a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có
BE chung
\(\widehat{ABE}=\widehat{KBE}\)
Do đó: ΔABE=ΔKBE
b: Ta có:ΔABE=ΔKBE
nên \(\widehat{AEB}=\widehat{KEB}\)
hay EB là tia phân giác của góc AEK
Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM ?
Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?
Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB). Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE
Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?
Cho tam giác ABC có AB=AC . gọi I là trung điểm của BC. a) chứng minh tam giác AIB = tam giác AIC. b) cm AI là tia pg của góc BAC. c) kẻ IH vuông góc AB tại H kẻ IK vuông góc với AC tại K . cm IA là tia pg của góc HIK.
Bài 1: Cho tam giác ABC vuông tại C. góc A=60 độ .Vẽ đường phân giác góc BAC cắt BC tại E.Kẻ EK vuông góc với AB tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE) .Cm:
a,Tam giác ACE=tam giác AKE
b,AE là đường trung trực của đoạn thẳng CK
c,KA=Kb
d, EB<AE
Bài 2: Cgo tam giác ABC vuông tại A , có đường phân giác góc ABC cắt AC tại E . Kẻ EH vuông góc với BC tại H ( H thuộc BC).CM:
a,Tam giác ABE=tam giác HBE
b,BE là đường trung trực của AH
c, EC>AE
B1: Cho tam giác ABC có góc C bằng 30 độ. Tia phân giác của góc B và đường phân giác góc ngoài tại A cắt nhau ở E. Tính số đo góc BCE
B2: Cho tam giác ABC có I là giao điểm các tia pg của góc B và góc C. Gọi D là giao điểm của AI và BC. Kẻ IH vuông góc BC (H thuộc BC) CMR: góc BIH = góc CID
B3: Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC. (H thuộc BC), các tia pg của góc HAC và AHC cắt nhau ở I. Tia phân giác của góc HAB cắt BC ở D. Cm: CI điq ua trung điểm của AD
Cho tam giác ABC có AB=6cm ; AC=8cm :=;BC=10cm
a)CM: tam giác ABC vuông tại A
b)vẽ tia BD là PG của góc ABC ( D thuộc AC) , qua điểm D kẻ đường thẳng DE vuông góc BC (E thuộc BC) và cắt đường thẳng AB tại F . CM: tam giác FDC cân
Cho tam giác ABC vuông tại C có góc A = 60 độ , tia pg góc BAC cắt BC tại E
Kẻ EK vuông góc AB ( K thuộc AB ) . Kẻ BD vuông góc AE ( D thuộc AE )
Cm :
a, AC = AK
b AE vuông góc CK
c, KA = KB
d, AC ,BD , KE đồng qui
Cho tam giác abc vg tại a kẻ đg cao ah a,tia pg góc hac cắt bc tại d qua d kẻ dk vg góc ac tại k c/m tam giác ahd = tam giác akd b,c/m tam giác bad cân c,tia pg góc bah cắt dc tại e c/m ab+ac=bc+de
1)Cho tam giác ABC có góc A=90o và tia phân giác BH, BH=AC. Kẻ HM vuông với BC(M thuộc BC). Gọi N là giao điểm của AB và MH. CM: a)Tam giác ABH=Tam giác MBH
b)BH là đường trung trực của AM
c)AM//CN
d)BH vuông góc với CN
2)Cho tam giác ABC vuông tại C có góc A=60o và đường phân giác của góc BAC cắt BC tại E. Kẻ EK vuông góc với AB tại K ( K thuộc AB), Kẻ BD vuông góc với AE (D thuộc AE). CM:
a)Tam giác ACE=Tam giác AKE
b)AE là đường trung trực của đoạn thẳng CK
c)KA=KB
d)EB>EC
cho tam giác ABC vuong tại A có B=60o tia phân giác của góc B cắt AC tại D KẺ DE vuông góc với BC tại E .CM AB=BE tam giác ABE là tam giác gì ? vì sao. CM E là trung điểm của BC