Cho tam giác ABC vuông góc A biết AB=6cm,BC=10cm, biết AB=6cm a)tính độ dài AC b) đường phân giác của góc ABC cắt cạnh AC ở E . Kẻ EH vuông góc BC (H thuộc BC). chứng minh rằng tam giác ABE= tam giác HBE c)gọi K là giao điểm của đường thẳng AB,HE. Chứng minh rằng tam giác EAC cân d) chứng minh đường thẳng BE là đường trung trực của AC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Vậy: AC=8cm
b) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)