Cho (O) đường kính AB và điểm C thuộc (O) sao cho AC >AB, từ O vẽ OH vuông góc với AC. Qua A vẽ tiếp tuyến Ax của (O) cắt tia OH tại D. cạnh DB cắt (O) tại E
a) chứng minh HA = HC
b) DC là tiếp tuyến của (O)
c) DH.DO = DE.DB và góc DHE = goc DBA
d) Trên tia đối của tia EA lấy F sao cho E là trung điểm của AF, từ F vẽ đường thẳng vuông góc với AD tại K. cạnh FK cắt đường thẳng BC tại M , chứng minh MK = MF
Cho tam giác ABC vuông cân tại A có đường cao AH. Trên HC lấy K, vẽ hình chữ nhật AHKO. Vẽ đường tròn tâm O bán kính OK, đường tròn này cắt cạnh AB tại D, cắt AC tại E. Gọi F là giao điểm thứ 2 của (O) và đường thẳng AB. Chứng minh rằng:
a) Tam giác AEF vuông cân và DO vuông góc với OE
b) 4 điểm D,A,O,E cùng nằm trên 1 đường tròn
Cho tam giác ABC vuông cân tại A. M là trung điểm BC, K thuộc đoạn MC. Dựng hình chữ nhật AMKO. Đường tròn tâm O bán kính OK cắt cạnh AB và cạnh AC tại D và E. BA kéo dài cắt (O) tại F. Chứng minh rằng tam giác AEF cân.
Cho tam giác ABC vuông tai A, đường cao AH . Đường tròn đường kính AH cắt các cạnh AB, AC lần lượt tại E và F.
1. Chứng minh tứ giác AEHF là hình chữ nhật;
2. Chứng minh AE.AB = AF. AC;
3.Đường rhẳng qua A vuông góc với EF cắt cạnh BC tại I. Chứng minh I là trung điểm của đoạn BC;
4. Chứng minh rằng nếu diện tích tam giác ABC gấp đôi diện tích hình chữ nhật AEHF thì tam giác ABC vuông cân.
Cho tam giác ABC vuông tai A, đường cao AH . Đường tròn đường kính AH cắt các cạnh AB, AC lần lượt tại E và F.
1. Chứng minh tứ giác AEHF là hình chữ nhật;
2. Chứng minh AE.AB = AF. AC;
3.Đường rhẳng qua A vuông góc với EF cắt cạnh BC tại I. Chứng minh I là trung điểm của đoạn BC;
4. Chứng minh rằng nếu diện tích tam giác ABC gấp đôi diện tích hình chữ nhật AEHF thì tam giác ABC vuông cân.
Cho tam giác ABC vuông tại A, AB<AC. Vẽ đường tròn tâm O đường kính AC cắt cạnh BC tại D. Gọi H,K là trung điểm của AD và DC. Tia OH cắt AB tại E. Tia OK cắt ED tại N và cắt (O) tại I.
a) Chứng minh AD là đường cao của tam giác ABC
b) Chứng minh DE là tiếp tuyến
c) Chứng minh OHDK là hình chữ nhật
d) Chứng minh DI lad phân giác góc NDC
e) Gọi F là giao điểm của OB và AD. Đường thẳng đi qua F vuông góc với AO cắt tia OH tại Q. Chứng minh A,Q,N thẳng hàng.
Cho tam giác ABC nội tiếp đường tròn (o) đường kính BC . Vẽ dây cung AD của (o) vuông góc với đường kính BC tại H . Gọi M là trung điểm cạnh OC và I là trung điểm cạnh AC . từ M vẽ đường thẳng vuông góc với OC , đường thẳng này cắt tia OI tại N . Trên tia ON lấy điểm S sao cho N là trung điểm cạnh OS
a) c/m tam giác ABC vuông tại A và HA = HD
b) c/m : MN // SC và SC là tiếp tuyến của đường tròn (o)
c) gọi K là trung điểm cạnh HC , vẽ đường tròng đường kính AH cắt cạnh AK tại F . C/m BH . HC = AF . AK
d) Trên tia đối của tia BA lấy điểm E sao cho B là trung điểm cạnh AE . C/m ba điểm E,H,F thẳng hàng
Cho tam giác ABC vuông tại A (AB<AC).Đường tròn (O) đường kính AB cắt BC tại H .Tia phân giác góc HAC cắt BC tại E và cắt đường tròn (O) tại điểm thứ 2 lf D .Gọi F là giao điểm của AH và BD .chứng minh rằng
a)Tứ giác DEHF nội tiếp
b)Δ ABE cân
c)OD là tiếp tuyến của đường tòn ngoại tiếp tứ giác DEHF
1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cm
a. Tính AH,ACM số đo góc ABC
B. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.AB
C. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IF
D. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF
2. Cho tam giấc ABC nội tiếp đường tròn (o) đườn kính BC. Vẽ dây AD của (o) vuông góc với đường kính BC tại H. Gọi M là trung điểm của cạnh AC.Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt OI tại N trên tia ON lấy điểm S sao cho N là trung điểm của cạnh OS
A. Chứng minh tam giác ABC vuông tại A và HA=HD
B. Chứng minh MN//SC và SC là tiếp tuyến của đường trong (O)
c. Gọi K là trung điểm của cạnh HC vẽ đương tròn đường lính AH cắt cạnh AK tại F chứng minh BH. HC= À. AK
D. T rên tia đối của tia BA lấy điểm E sao hco B là trung điểm của cạnh AE chứng minh E,H,F thẳng hàng
GIÚP MÌNH VỚI!!!