Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Lấy điểm D bất kì thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng:
a) BH = AI.
b) BH^2 + CI^2 = 2AM^2
c) IM là phân giác của góc HIC
Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Lấy điểm D bất kì thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD.Đường thẳng AM cắt CI tại N.CMR:
a) BH=AI
b) Đường thẳng DN vuông góc với AC
c) IM là tia phân giác của góc HIC
CÓ AI GIÚP EM PHẦN c VỚI NGHĨ MÃI KHÔNG RA
Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Lấy điểm D bất kì
thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường
thẳng AM cắt CI tại N. Chứng minh rằng:
a) BH = AI.
b) BH2 + CI2 có giá trị không đổi.
c) Đường thẳng Dn vuông góc với AC.
Cho tam giác đều ABC có cạnh bằng a, trên đường thẳng ∆ đi qua A vuông góc với mặt phẳng (ABC) lấy điểm M bất kì. Gọi E, F lần lượt là hình chiếu vuông góc của B lên MC, AC và đường thẳng ∆ cắt EF tại N (như hình bên). Khi đó thể tích của tứ diện MNBC đạt giá trị nhỏ nhất bằng bao nhiêu?
A. a 3 6 4 .
B. a 3 3 4 .
C. a 3 3 6 .
D. a 3 6 12 .
Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD có diện tích bằng 16. Biết tam giác ABC cân tại A, cạnh BC=4 và K ( 21 5 ; 18 5 ) là hình chiếu của điểm B xuống AC. Tìm tọa độ điểm D biết rằng điểm B thuộc đường thẳng △ : x + y - 3 = 0 đồng thời hoành độ các điểm B, C đều là các số nguyên
A. D(5;2)
B. D(7;6)
C. (-7;-6)
D. D(-5;-2)
Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh BC, trên tia đối của tia CB lấy điểm E sao cho CE=BD. Các đường thẳng vuông góc với BC tại D và E lần lượt cắt các đường thẳng AB và Ac theo thứ tự tại M, N. Gọi I là giao điểm của MN với BC. CMR đường thẳng vuông góc với MN luôn đi qua một điểm cố đinh.
Cho tam giác ABC vuông tại A có AB= 9cm ; BC=10cm
a. Tính AC và so sánh các góc tam giác ABC
b. Trên tia đối tia AB lấy điểm D sao cho A là trung điểm BD. Chứng minh tam giác BCD cân
c. Gọi E; F lần lượt là trung điểm các cạnh DC, BC. Đường thẳng BE cắt cạnh AC tại M.
Tính CM và chứng minh 3 điểm D; M; F thẳng hàng
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho HA=2HB. Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60°. Tính khoảng cách d giữa hai đường thẳng SA và BC theo a.
A. d = a 42 8
B. d = a 21 12
C. d = a 42 12
D. d = a 462 66
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho H A = 2 H B . Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60°. Tính khoảng cách d giữa hai đường thẳng SA và BC theo a.
A. d = a 42 8
B. d = a 21 12
C. d = a 42 12
D. d = a 462 66