Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
Cho tam giác ABC vuông tại A có AB<AC , kẻ đường phân giác BD của góc ABC ( D thuộc AC ) . Kẻ DM vuông góc với BC tại M
â) Cm: tam giác DAB = tam giác DMB
b) CM: BD là đường trung trực của AM
c) Gọi K là giao điểm của đường thẳng DM và AB , đường thẳng BD cắt KC tại N . CM: BN vuông góc Kc và tam giác KBC cân tại B
đ) gọi E al trunbg điểm của BC . Qua N kẻ đường thẳng song song với BC , cắt AB tại P . CM : 3 duog thằng CP , KỆ , BN đồng quy
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối tia CB lấy điểm E sao cho BD = CE. Qua D kẻ đường thẳng vuông góc với BC cắt AB ở M. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại N (biết M và N nằm trên hai nửa mặt phẳng đối nhau). Gọi giao điểm của MN với BC là I. Đường vuông góc với MN kẻ qua I cắt tia phân giác của góc BAC ở O. CMR:
a) Tam giác MBD = tam giác NCE.
b) ME // DN.
c) Tam giác MON cân tại O.
d) OC _|_ AN.
cho tam giác ABC vuông cân tại A, M là 1 điểm thuộc cạnh AC. Gọi I,K lần lượt là trung điểm của canh BM,AC. Qua A kẻ đường thẳng vuông góc với IK, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại H. Tính góc HMC
Cho tam giác ABC cân tại A. Kẻ Ah vuông góc với BC( H thuộc BC)
a) CM: HB=HC
b) CM: Ah là tia phân giacscuar góc BAC
c) Qua B vẽ đường thẳng vuông góc với AB, qua C vẽ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau ở D. Cm tam giác DBC cân.
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E a) Chứng minh tam giác ADE cân b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác ADE cân.
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF.
c) Chứng minh BD = CE.
Co ta giác ABC vuông tại A, có góc C=30 độ, đường phân giác BD (B thuộc AC). Qua D kẻ đường thẳn vuông góc với BC tại M và cắt tia BA tại E.
a) Chứng minh AB=BM.
B) Chứng minh tam giác BCD cân và M là trung điểm BC.
C) Qua M kẻ đường thẳng vuông góc với Ac và cắt tia BD tại F. Chứng minh rẳng C,F,E thẳng hàng