Cho tam giác ABC thỏa mãn \(\frac{m_b}{m_c}=\)\(\frac{c}{b}\)\(\ne1\)
(mb,mc là độ dài trung tuyến từ B,C
CMR \(2a^2=b^2+c^2\)
Cho a,b,c là độ dài các cạnh của một tam giác, ma, mb, mc là độ dài các đường trung tuyến của tam giác đó. Chứng minh rằng
\(\dfrac{a}{m_a}+\dfrac{b}{m_b}+\dfrac{c}{m_c}\ge\dfrac{\sqrt{3}}{2}\)
Cho tam giác ABC có a,b,c,ma,mb,mc,R lần lượt là độ dài các cạnh BC,CA,AB, độ dài các đường trung tuyến kẻ từ A,B,C và bán kính đường tròn ngoại tiếp tam giác. Biết rằng: \(\frac{a^2+b^2}{mc}+\frac{b^2+c^2}{ma}+\frac{c^2+a^2}{mb}=12R\). Chứng minh rằng tam giác ABC đều
Tính độ dài đường trung tuyến
Cho tam giác ABC, có cạnh BC=a, AC=b, AB =c. Gọi ma , mb , mc lần lượt là độ dài trung tuyến từ đỉnh A, B, C của tam giác. Hãy tính ma , mb , mc theo a, b, c.
cho tam giác ABC . BM,CN lần lượt là accs đường trung tuyến . CMR các điều sau là tương đương
1) BM vuông góc với CN
2) AC2 + AB2= 5BC2
3) cotA= 2(cotB + cotC)
CMR : \(cotA+cotB+cotC=\frac{a^2+b^2+c^2}{4S}\)
với a,b,c là các cạnh ký hiệu quy ước ; S là diện tích tam giác
Cho tam giác ABC có trung tuyến ma=c. CMR: cotC = 3cotB
Cho tam giác ABC có a=48cm,b=26cm,c=30cm
a) Tính các góc tam giác ABC
b)Tính diện tích tam giác ABC
c) Tính độ dài 3 đường trung tuyến của tam giác ABC