Lời giải:
\(a(a^2-b^2)=c(b^2-c^2)\)
\(\Leftrightarrow a(a^2-b^2)-c(b^2-c^2)=0\)
\(\Leftrightarrow (a^3+c^3)-(ab^2+b^2c)=0\)
\(\Leftrightarrow (a+c)(a^2-ac+c^2)-b^2(c+a)=0\)
\(\Leftrightarrow (a+c)(a^2-ac+c^2-b^2)=0\)
\(\Rightarrow a^2-ac+c^2-b^2=0\) (do $a+c\neq 0$)
\(\Rightarrow b^2=a^2-ac+c^2\)
Mặt khác, theo định lý hàm cosin ta có:
\(b^2=a^2+c^2-2ac\cos B\)
\(\Rightarrow a^2-ac+c^2=a^2+c^2-2ac\cos B\)
\(\Rightarrow \cos B=\frac{1}{2}\Rightarrow \widehat{B}=60^0\)