MP/AD=BP/BD=BM/AB
=>MP*BD=BP*AD
AD/NP=CD/CP
=>AD*CP=NP*CD
=>MP*BD+CD*NP=BP*AD+AD*CP
=>MP+NP=2AD
=>PM+PN ko đổi
MP/AD=BP/BD=BM/AB
=>MP*BD=BP*AD
AD/NP=CD/CP
=>AD*CP=NP*CD
=>MP*BD+CD*NP=BP*AD+AD*CP
=>MP+NP=2AD
=>PM+PN ko đổi
Cho tam giác ABC. Kẻ trung tuyến AM (M thuộc BC). Lấy I thuộc cạnh AM, Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E và F. Chứng minh EI= FI.
Cho tam giác ABC, đường trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM cắt AB và AC lần lượt tại Evà F.
a, Chứng minh DE+DF=2AM.
b, Đường thẳng qua A song song với BC cắt EF tại N. Chứng minh N là trung điểm của EF.
cho tam giác ABC có AB = AC . trên cạnh Bc lấy điểm M qua M kẻ đường thẳng song song với AC cắt cạnh AB tại N qua M kẻ đường thẳng song song cới AB, cắ t AC tại P
a . chứng minh AM, NP và đường thẳng đi qua trung điểm cạnh AB, cạnh AC đồng qui
b. tìm vị trí của M trên cạnh BC để AM vuông góc với NP
c. chứng minh rằng chu vi tứ giác APMN không thay đổi khi M di động trên cạnh BC
Cho tam giác ABC, trung tuyến AD, điểm P di động trên cạnh BC, qua P kẻ đường thẳng d//AD, d cắt AB, AC theo thứ tự tại M và N. Chứng minh:
PM+PN=2.AD
Bài 30. Cho tam giác ABC. P là điểm tùy ý trên cạnh BC. Qua P kẻ đường thẳng song song với AB cắt AC tại E và kẻ đường thẳng song song với AC cắt AB tại E. Từ B kẻ đường thẳng song song với DE cắt PD tại N. Chứng minh rằng AN đi qua điểm cố định khi P thay đổi trên cạnh BC
Cho tam giác ABC, trung tuyến AD, trên cạnh AB lấy M. Qua M, kẻ đường thẳng song song với BC cắt AD và AC lần lượt ở E và N. Chứng minh:
a) ME=NE
b) AM=2/3 AB
c) tính diện tích tam giác ABC biết diện tích tam giác MEB là 1cm^2
Cho tam giác ABC. Gọi I là 1 điểm di chuyển trên cạnh BC. Qua I, kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I, kẻ đường thẳng song song với cạnh AB cắt cạnh AC tại N.
1) Gọi O là trung điểm của AI. Chứng minh rằng 3 điểm M,O,N thẳng hàng
2) Kẻ MH,NK,AD vuông góc với BC lần lượt là H,K,D.C/m rằng MH+NK=AD
Cho tam giác ABC. Gọi I là một điểm di chuyển trên cạnh BC. Qua I, kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I, kẻ đường thẳng song song với cạnh AB cắt cạnh AC tại N.
1) Gọi O là trung điểm của AI. Chứng minh rằng ba điểm M, O, N thẳng hàng.
2) Kẻ MH, NK, AD vuông góc với BC lần lượt tại H, K, D. Chứng minh rằng MH + NK = AD.
3) Tìm vị trí của điểm I để MN song song với BC.
Cho tam giác ABC. Gọi I là một điểm di chuyển trên cạnh BC. Qua I, kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I, kẻ đường thẳng song song với cạnh AB cắt cạnh AC tại N.
1) Gọi O là trung điểm của AI. Chứng minh rằng ba điểm M, O, N thẳng hàng.
2) Kẻ MH, NK, AD vuông góc với BC lần lượt tại H, K, D. Chứng minh rằng MH + NK = AD.
3) Tìm vị trí của điểm I để MN song song với BC.