Cho tam giác ABC các góc đều nhọn và nội tiếp đường tròn tâm O. H là trực tâm của tam giác ABC.Vẽ đường thẳng AH cắt (O)tại H',cắt BC tại M.E,Flan lượt là trung điểm các cạnh CHva CH'.C/M EF song song và có độ dài bằng HM
Giúp mình bài này nhé
Cho tam giác ABC có 3 góc nhọn nội tiếp trong (O;R) có đường cao là AD và đường kính là AM; AD cắt (O) tại K
a) chứng minh B, K, M, C là 4 đỉnh của một hình thang cân.
b) Gọi H là điểm đối xứng của K qua BC. Chứng minh H là trực tâm của tam giác ABC
c) BH cắt AC tại E, CH cắt AB tại F. Chứng minh trung điểm I của AH thuộc đường tròn ngoại tiếp tam giác FED. Cho AE=3, CE=4, BH=4. Tính HE.
Mình giải được a và b rồi còn c thì làm mãi không được
Cho đường tròn tâm O đường kính AB. Kẻ tiếp tuyến Ax của (O) (A là tiếp điểm). Trên Ax lấy điểm I bất kỳ khác A, kẻ tiếp tuyến IC với (O)(A là tiếp điểm), BC cắt Ax tại D.A)
a) Chứng minh tứ giác OAIC nội tiếp và OI // DB
b) Gọi E là giao điểm của IB và (O), E khác B.
c) Kẻ đường cao AH của tam giác ABC, H thuộc BC, DE cắt(O) tại F. Chứng minh C, H, F thẳng hàng.
d) Gọi K là giao điểm của BI, CH. Chứng minh diện tích tam giác ABK bằng tổng diện tích tam giác AKC và BKC.
Bài 1 : Cho tam giác ABC nhọn nội tiếp ( O ; R ) , H là trực tâm tam giác ABC . Vẽ đường kính AD của ( O ; R ) . Chứng minh :
a, BH // DC
b, tứ giác BHCD là hình bình hành
c, Gọi giao điểm của BH và AC là E , góc BAC = 60* , góc ACB = 45* , AC = 5 cm . Tính diện tích tam giác ABC
Bài 2 : Cho ( O;R ) dây AB không qua tâm . Vẽ dây AC vuông góc với dây AB tại A , C thuộc ( O ) . Chứng minh :
a, B , O , C thẳng hàng
b, diện tích tâm giác ABC nhỏ hơn hoặc bằng \(R^2\)
1 cho tam giaác ABC có góc A tù, trực tâm H và nội tiếp dường tròn tâm o đường kính AE chứng minh rằng HE đi qua trung điểm của BC
cho (o:r),dây BC cố định không qua tâm O. A thay đổi trên cung BC lớn sao cho O luôn nằm trong tam giác ABC. Các đường cao AD, BE, CF cắt nhau tại H. AO cắt (O) tại K
a, CMR: Tứ giác BEFC nội tiếp và BHCK là hình bình hành
b, Gọi M là trung điểm BC , AM cắt OH tại I. CM: I là trọng tâm tam giác ABC
c, xác định vị trí A để chu vi tam giác DEF có giá trị lớn nhất
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O, ba đường cao AD,BE,CF của tam giac ABC cắt nhau ở H. kéo dài AO cát đường tròn tại M, kéo dài AD CẮT dường tròn O tại A
1. MK // BC
2. DH=DK
3.HM đi qua trung điểm của I của BC
giúp mk ý 2,3 nhá
Cho đường tròn tâm O, bán kính R và một dây cung BC cố định (BC không đi qua O). A là một điểm di động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao AD, BE và CF của tam giác ABC đồng quy tại H. Các đường thẳng BE và CF cắt đường tròn tâm O tại điểm thứ hai lần lượt là Q và P.
a) CMR: bốn điểm B, F, E, C cùng thuộc một đường tròn.
b) CMR: các đường PQ, EF song song với nhau.
c) Gọi I là trung điểm của BC. CMR: góc FDE bằng hai lần góc ABE và góc FDE góc FIE.
d) Xác định vị trí của điểm A trên cung lớn BC để chu vi tam giác DEF có giá trị lớn nhất.
1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.
2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó đều là tam giác cân.
3. (Thuỵ Điển, 82) Tìm tất cả các giá trị của n N để với mỗi giá trị đó tồn tại số m N, mà tam giác ABC có cạnh AB = 33, AC = 21, BC = n và các điểm D, E lần lượt ở trên cạnh AB, AC thoả mãn điều kiện AD=DE=EC=m.
4. (Việt Nam, 79) Tìm tất cả bộ ba các số a, b, c N là các độ dài các cạnh của tam giác nội tiếp đường tròn đường kính 6,25.
5. (Nữu Ước, 78) Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF.
6. (Nam Tư, 81) Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy.
7. (Áo, 83) Cho tam giác ABC, trên các cạnh AB, AC, BC lấy lần lượt các điểm C’, B’, A’ sao cho các đoạn AA’, BB’, CC’ cắt nhau tại một điểm. Các điểm A”, B”, C” lần lượt đối xứng với các điểm A, B, C qua A’, B’, C’. Chứng minh rằng: SA”B”C” = 3SABC + 4SA’B’C’
8. (Áo, 71) Các đường trung tuyến của tam giác ABC cắt nhau tại O. Cmr: AB2 + BC2 + CA2 = 3(OA2 + OB2 + OC2)
9. (Nữu Ước, 79) Chứng minh rằng nếu trọng tâm của một tam giác trùng với trọng tâm của tam giác có các đỉnh là trung điểm các đường biên của nó, thì tam giác đó là tam giác đều.
10. (Anh, 83) Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
11. (Tiệp Khắc, 72) Tìm tất cả các cặp số thực dương a, b để từ chúng tồn tại tam giác vuông CDE và các điểm A, B ở trên cạnh huyền DE thoả mãn điều kiện: và AC=a, BC=b.
12. (Nữu Ước, 76) Tìm một tam giác vuông có các cạnh là số nguyên, có thể chia mỗi góc thành ba phần bằng nhau bằng thước kẻ và compa.
13. (Phần Lan, 80) Cho tam giác ABC. Dựng các đường trung trực của AB và AC. Hai đường trung trực trên cắt đường thẳng BC ở X và Y tương ứng. Chứng minh rằng đẳng thức: BC=XY
a) Đúng nếu tanB.tanC=3
b) Đẳng thức có thể đúng khi tanB.tanC 3: khi đó hãy tìm tập hợp M thuộc R để đẳng thức đã dẫn trên tương đương với điều kiện tanB.tanC M.
14. (Nữu Ước, 76) O là trực tâm của tam giác nhọn ABC. Trên đoạn OB và OC người ta lấy hai điểm B1 và C1 sao cho . Chứng minh rằng AB1=AC1.
15. (Anh, 81) O là trực tâm của tam giác ABC, A1, B1, C1 là trung điểm các cạnh BC, CA, AB. Đường tròn tâm O cắt đường thẳng B1C1 ở D1 và D2, cắt đường thẳng C1A1 ở E1 và E2, cắt đường thẳng A1B1 ở F1 và F¬2. Cmr: AD1=AD2=BE1=BE2=CF1=CF2.
16. (Nam Tư, 83) Trong tam giác ABC lấy điểm P, còn trên cạnh AC và BC lấy các điểm tương ứng M và L sao cho: và . Chứng minh rằng nếu D là trung điểm cạnh AB thì DM=DL.
17.Tìm quĩ tích các điểm M trong tam giác ABC thoả mãn điều kiện: MAB + MBC+ MCA=90
18.Kí hiệu Bij (i, j {1;2;3}) là điểm đối xứng của đỉnh Ai của tam giác thường A1A2A3 qua phân giác xuất phát từ đỉnh A1. Chứng minh rằng các đường thẳng B12B21, B13B31, B23B32 song song với nhau.
19. Đường phân giác trong và ngoài góc C của tam giác ABC cắt đường thẳng AB ở L và M. Chứng minh rằng nếu CL=CM thì: AC2+BC2=4R2 (R là bán kính đường tròn ngoại tiếp tam giác ABC).