1) Cho (O) và (I) lần lượt là đường tròn ngoại tiếp và đường tròn nội tiếp của tam giác ABC. Tia AI cắt (O) tại D, tia BI cắt (O) tại E, tia CI cắt (O) tại F (D khác A, E khác B, F khác C). Chứng minh rằng:
AD + BE + CF > AB + BC + CA
2) Cho tam giác cân ABC nội tiếp trong đường tròn (O;R) (AB = AC và BAC = 300). Gọi D là điểm thuộc cung nhỏ AB sao cho cung BD = 300, E là điểm thuộc cung nhỏ AC sao cho DE = AB và EA < EC, DE cắt AB và AC lần lượt tại M và N. Tính: AB và AM theo R.
Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC(AB<AC, góc AOB>60 độ), D là một điểm thuộc cung nhỏ AB sao cho DA=DB. Đường trung trực của đoạn OA cắt đường tròn (O) tại E và F(F thuộc cung nhỏ AC)
a)CMR sđ cung FC=2 sđ cung DE
b)Đường thẳng qua O song song với DA cắt AC tại J. CMR EJ là phân giác của góc CEF
Cho tam giác \(ABC\) nhọn nội tiếp đường tròn tâm \(O\). Gọi \(D,E\) lần lượt là điểm chính giữa của cung nhỏ \(AB,AC\). Gọi giao điểm của \(DE\) và \(AB\), \(DE\) và \(AC\) lần lượt là \(H\) và \(K\).
\(a\)) Chứng minh rằng: Tam giác \(AHK\) cân
\(b\)) Gọi \(I\) là giao điểm của \(CD\) và \(BE\). Chứng minh: \(AI\) vuông góc với \(DE\)
\(c\)) Chứng minh: \(IK//AB\)
Cho (O; R) đường kính AB và điểm C thuộc đường tròn. Gọi M và N là điểm chính giữa các cung nhỏ AC và BC Nối MN cắt AC tại I. Hạ ND vuông góc AC. Gọi E là trung điểm của BC. Dựng hình bình hành ADEF.
Tính góc MIC ?
chứng minh Dn là tiếp tuyến (O)
chứng minh F thuộc (O;R)
cho góc CAB bằng 30 độ R=10cm tính thể tích hình tạo thành khi cho tam giác ABC quay 1 vòng quanh AB
Cho (O,R) ,1 điểm A sao cho OA=2R Vẽ các tiếp tuyến AB,AC (B,C là các tiếp điểm).Đường thẳng OA và BC cắt nhau tại H ,cắt cung nhỏ và cung lớn BC lần lượt tại M và N.
1.Tính AB theo R
2.Chứng minh OA vuông góc BC và MN2=4.0A.HM
3.Vẽ cắt tuyến bất kì A,D,E .Gọi K là trung điểm DE .Chứng minh 5 điểm:A,B,O,K,C cùng thuộc 1 đường tròn.
Cho nửa đường tròn tâm O đường kính AB lấy điểm c thuộc nửa đường tròn sao cho AC = R.căn2. N là một điểm trên cung nhỏ BC AN cắt BC tại I tia AC cắt BN tại D a. ACO là tam giác gì b . tính độ dài BC theo R c. Tính số đo góc BAC và số đo góc CDI
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O. Điểm M thuộc cung nhỏ BC, vẽ MD, ME, MF lần lượt vuông góc với AB, BC, AC tại D, E, F.
a) CM: Tứ giác MEFC nội tiếp và góc DBM= góc DEM
b) CM: 3 điểm D, E, F thẳng hàng và MB.MF=MD.MC
c) Gọi V là trực tâm của tam giác ABC. Tia BV cắt (O) tại R. CM: Góc FRV=góc FVR. Từ đó suy ra DE đi qua trung điểm của VM
Cho tam giác ABC cân tại A,
AB =AC =10cm;BC=12cm
. Gọi O là trung điểm của BC. Vẽ
đường tròn tâm (O) tiếp xúc với AB; AC theo thứ tự tại D và E. Điểm M thuộc cung nhỏ DE.
Tiếp tuyến với đường tròn (O) tại M cắt các cạnh AB, AC lần lượt tại P và Q.
a) Tính bán kính của (O).
Cho tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên nội tiếp đường tròn tâm O bán kính r .Tiếp tuyến tại B và C của đường tròn tâm O bán kính r cắt nhau tại D.
a) Chứng minh tứ giác ABC nội tiếp được đường tròn
b) Đường thẳng BD và AC cắt nhau tại E Chứng minh EB²= EC×EA
c) Từ m trên cung nhỏ BC vẽ MI vuông góc với BC MH vuông góc với AB MF vuông góc với AC Chứng minh E,H,F thẳng hàng
d) cho góc BAC bằng 30 độ Tính theo r diện tích của tứ giác ABCD