Cho tam giác ABC nhọn.Dựng ở phía ngoài tam giác ABC 2 tam giác vuông ABD và ACE sao cho AD = BD,AE=CE
a.Chứng minh DC = BE
b.DC vuông góc với BE
c.Nếu AC = AB. Chứng minh tam giác ABD = tam giác ACE
d.Gọi M là trung điểm của BC
chứng minh AM vuông góc với DE
Cho tam giác ABC. Vẽ ở phía ngoài tam giác ABC các tam giác vuông tại A và ABD, ACE có AB = AD, AC = AE. Kẻ AH vuông góc với BC, DM vuông góc với AH, EN vuông góc với AH. Chứng minh rằng: MN đi qua trung điểm của DE
Cho tam giác ABC. Ở phía ngoài tam giác ABC vẽ các tam giác vuông tại A là ABD và ACE có: AB = AD, AC = AE. kẻ AH vuông góc với BC. Gọi I là giao điểm của HA và DE. chứng minh: DI = IE
Bài 1: Cho tam giác ABC ở phía ngoài tam giác ABC vẽ các tam giác vuông tại A là ABD và ACE có AB=AD, AC=AE. Kẻ AH vuông góc với BC, gọi I là giao điểm của AH với DE. Kẻ DM vuông góc với IH, EL vuông góc với IH. Chứng minh:
a) Tam giác HBD= tam giác MAD
b) Tam giác HCA= tam giác LEA
c) ID=IE
Bài 2: Cho tam giác ABC có AB>AC. Trên tia đối của tia CA lấy điểm D sao cho CD=AB. Gọi I là giao điểm của đường trung trực của BC và AD. Chứng minh:
a) Tam giác AIB= tam giác DIC
b) AI là tia phân giác của góc BAC
c) Kẻ IE vuông góc với AB. Chứng minh AE=\(\frac{1}{2}\) AD
Cho tam giác ABC ở phía ngoài tam giác ABC vẽ các tam giác vuông tại A đó là tam giác ABD và tam giác ACE có AB = AD và AC = AE Kẻ AH vuông góc BC Gọi I là giao điểm HA và DE . Chứng minh DI = IE
cho tam gics ABC ở phía ngoài tam giác ABC vẽ các tam giác vuông tại A là ABD và ACE có AB=AD; AC=AE. kẻ AH vuông góc với BC gọi I là giao điểm của AH và DE. chứng minh rằng DI=IE
cho tam giác ABC vuông tại A tia phân giác góc ABC cat AC tại D vẽ DE vuông góc với BC(E thuộc BC) AE cắt BD tại F đường thẳng vuông góc với BC tại B cắt CA tại M gọi I là giao điểm bất kỳ thuộc đường thẳng AB trên tia đối AB lấy J sao cho AJ=BI
a) chứng minh tam giác ABD = tam giác EBD và AD = DE
b) chứng minh AD<DC
c) chứng minh CF là trung tuyến của tam giác ACE
d) chứng minh RJ vuông góc JC
Cho tam giác Abc, vẽ phía ngoài tam giác ABC các tam giác vuông tại A là tam giác ABD;tam giác ACE; có AB =AD; AC=AE. kẻ AH vuông góc BC; DM vuông góc ANH; EN vuông góc AH. chứng minh: a) DM = AH; b) MN đi qua trung điểm DE
Cho tam giác ABC. Vẽ về phía ngoài của tam giác ABC các tam giác vuông tại A là ABD, ACE có AB= AD, AC=AE. Kẻ AH vuông góc với BC, DM vuông góc với AH, EN vuông góc với AH. CHứng minh rằng :
a) DM= AH
b) DM đi qua trung điểm của DE.