Cho tam giác ABC nhọn; trực tâm H. Chứng minh: tam giác ABC đều khi và chỉ khi AH/BC=BH/CA=CH/AB
Cho tam giác ABC có 3 góc nhọn, H là trực tâm.
Biết \(\frac{AH}{BC}=\frac{BH}{CA}=\frac{CH}{AB}\)
CHỨNG MINH TAM GIÁC ABC ĐỀU
CHo tam giác ABC có 3 =góc nhọn và H là trực tâm . Gọi M,N,P,Q lần lượt là giao điểm thứ 2 của các đường thảng AH, BH, CH với đường tròn ngoại tiếp tam giác ABC; D,E,F lần lượt là chân các đường cao hạt từ A,B,C của tam giác ABC. Chứng minh tam giác MHC cân và tính tổng \(\frac{AM}{AD}+\frac{BN}{BE}+\frac{CP}{CF}\)
cho tam giác ABC có 3 góc nhọn . các dường cao AD,BE và CF cắt nhau tại H
Chứng minh \(\frac{AH}{BC}+\frac{BH}{AC}+\frac{CH}{AB}>=\sqrt{3}\)
cho tam giác ABC có 3 góc nhọn . các đường cao AD,BE,CF cắt nhau tại H
chứng minh rằng \(\frac{AH}{BC}+\frac{BH}{AC}+\frac{CH}{AB}>=\sqrt{3}\)
Cho tam giác ABC nhọn nhận H làm trực tâm. Chứng minh ta có bất đẳng thức:
\(HA+HB+HC
Cho tam giác ABC có 3 góc nhọn, BC=a, AC=b, AB=c.
a) Chứng minh rằng: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
b) \(S_{ABC}=\frac{1}{2}bc.sinA\)
c) Cho đường cao AH=h.
Chứng minh rằng: cotg B + cotg C = 2 khi và chỉ khi a=2h
Cho tam giác ABC cân tại A ( góc A nhọn), đường cao BH. Chứng minh \(\frac{AH}{BH}=2\left(\frac{AB}{BC}\right)^2-1\)
Cho tam giác ABC có trung tuyến AM. Gọi O,I lần lượt là tâm các đường tròn ngoại tiếp và nội tiếp của tam giác. Chứng minh rằng: \(AM\perp OI\)khi và chỉ khi \(\frac{2}{BC}=\frac{1}{AB}+\frac{1}{BC}\)