a: Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
a: Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
Cho tam giác ABC vuông tại A có AB<AC. Vẽ AH vuông góc với cạnh BC tại. Trên tia đối của tia AH lấy điểm Dsao cho DH=AH.
a) Chứng minh tam giác HCD= tam giác HCA
b)Chứng minh BD vuông góc với DC
c)Qua điểm Avẽ đường thẳng song song với cạnh BC, qua điểm Cvẽ đường thẳng song song với cạnh AB, hai đường thẳng này cắt nhau tại E. Chứng minh AE=BC
d)Gọi M là trung điểm cạnh HC, qua Mvẽ đường thẳng vuông góc với cạnh HC cắt cạnh DC tại I. Từ H vẽ đường thẳng vuông góc với cạnh AB tại K. Chứng minh ba điểm H,K,I thẳng hàng.
Cho tam giác ABC, trên tia đối của AB lấy D sao cho AD=AB. Lấy G thuộc AC sao cho AG = 1/3.AC. Tia DG cắt BC tại E; qua E vẽ đường thẳng song song với BD; qua D vẽ đường thẳng song song với BC. Hai đường này cắt nhau tại F. Gọi M là giao của È và CD. Chứng minh 3 điểm B, G, M thẳng hàng.
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Lấy G thuộc cạnh AC sao cho A G = 1 3 A C . Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD.
Chứng minh:
a) G là trọng tâm tam giác BCD;
b) ∆ B E D = ∆ F D E , từ đó suy ra EC = DF;
c) ∆ D M F = ∆ C M E ;
d) B, G, M thẳng hàng.
Cho tam giác ABC nhọn (AB<AC). Qua A vẽ AH vuông góc với BC tại H và vẽ đường thẳng a vuông góc với AH.
a) Chứng minh rằng: Đường thaby83 a song song với BC.
b) Qua H vẽ đường thẳng b song song với AB, đường thẳng này cắt đường thẳng a tại D. Chứng minh rằng góc ABC bằng góc HDA.
c) Vẽ d là đường trung trực của cạnh AB. Chứng minh rằng: d vuông góc vởi b.
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Lấy G thuộc cạnh AC sao cho AG = AC. Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD. Chứng minh: a) G là trọng tâm tam giác BCD. b) , từ đó suy ra EC = DF
Bài 7 : Cho tam giác ABC Qua A kẻ đường thẳng song song với BC ,qua C kẻ đường thẳng song song với AB hai đường thẳng này cắt nhau tại D a. Chứng minh tam giác ABC bằng tam giác ADC b. Chứng minh hai tam giác ADB &CBD bằng nhau c. Gọi O là giao điểm của AC&BD .Chứng minh hai tam giác ABO&COD bằng nhau
cho tam giác ABC trên tia đối của AB lấy D sao cho AD = AB . Lấy G thuộc AC sao cho AG =1/3 AC . Tia DG cắt BC tại E . Qua E vẽ đường thẳng song song với BD . Qua D vẽ dường thảng song song với BC 2 đường này cắt nhau tại F gọi M là giao điểm của EF vsf CD
a)chứng minh G là trọng tâm của tam giác BCD
b)chứng minh tam giác BED = tam giác FDE
Cho tam giác ABC có AB lớn hơn AC tia phân giác của góc A cắt BC tại D qua B kẻ đường thẳng vuông góc với AC cắt AC tại E a Chứng minh AB =AE b qua qua e kẻ đường thẳng song song với BC cắt AD tại F kẻ đường hai đường thẳng song song với BC tại K
Cho tam giác ABC vuông tại A (AB<AC) trên tia đối của tia AB lấy điểm D sao cho AD =AB. chứng minh tam giác ABC = tam giác ADC. Gọi M là trung điểm BC đường thẳng qua B và song song với CD cắt DM tại K chứng minh BK = CD. Qua A kẻ đường thẳng song song với BC cắt CD tại M chứng minh tam giác AMC cân