a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn (O) có M là trung điểm của AB, N là trung điểm của BC. Đường cao hạ từ đỉnh A của tam giác ABC cắt đường tròn (O) tại H và cắt đường tròn (T) ngoại tiếp tam giác BNH tại K. Gọi D và E lần lượt là giao điểm của đường thẳng HN với đường thẳng AC và đường tròn (O) ; F là giao điểm của đường thẳng DK và đường tròn (T). Đường tròn ngoại tiếp tam giác DEF cắt đường tròn (T) tại P và cắt đường thẳng AC tại Q. Chứng minh rằng: ba điểm N, P, Q thẳng hàng.
Cho đường tròn tâm O đường kính AB. Trên đường tròn tâm O lấy điểm C (C không trùng với A,B và CA>CB) . Các tiếp tuyến của đường tròn tâm O tại A, tại C cắt nhau kẻ điểm D, kẻ CH vuông góc với AB ( thuộc AB), DO cắt AC tại E . Cminh: a/ tứ giác OECH nội tiếp
b/ Đường thẳng CD cắt đường thẳng AB tại F. Chứng minh 2^BCF +^CFB =90o
c/BD cắt CH tại M. Chứng minh EM//AB
Các bạn giúp mình nhé :)
cho đường tròn tâm o nội tiếp tam giác ABC cân tại A đường cao AH cắt đường tròn tâm o tại D chứng minh BC.BC=4AH.DH
Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
1. Cho đường tròn tâm O đường kính AB, vẽ đường tròn tâm M đường kính OA. bán kính OC của đường tròn O cắt M tại D, vẽ CD vuông góc với AB. Tứ giác ADCH là hình gì?
2.Cho (O;R) Vẽ 2 bán kính OA;OB. Trên OA và OB lấy các điểm M,N sao cho OM=ON. Vẽ dây BC đi qua MN (M nằm giữa C và N)
a. So sánh MC và ND
b.Biết AOB=90 độ và CM=MN=MD. Tính OM theo R
3.Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và cá góc A=45 độ. 2 đường tròn BE và CF cắt nhau tại E. CMR: B,E,O,F,C cùng nằm trên 1 đường tròn.
Từ điểm A ở ngoài đường tròn (O,R) vẽ hai tiếp tuyến AB , AC đến (O)
a, CHứng minh OA vuông góc với BC tại H
b, Vẽ đường thẳng vuông góc với OB tại O cắt cạnh AC tại E
Chứng minh tam giác OAE cân
c, Trên tia đối của tia BC lấy điểm Q , Vẽ 2 tiếp tuyến QM, QN đến (O) . CHứng minh 3 điểm A,M,N thẳng hàng
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O (AB< AC).Các đường cao AD và CF của tam giác ABC cắt nhau tại H.
a) Chứng minh tứ giác BFHD nội tiếp
b) Gọi M là điểm bất kì trên cung nhỏ BC của đường tròn tâm O (M khác B,C) và N là điểm đối xứng của M qua BC .chứng minh tứ giác AHCN nội tiếp
c) Gọi I là giao điểm của AM và CH; J là giao điểm của AC và HN. Chứng minh góc AJI = góc ANC
d) Chứng minh rằng OA vuông góc với IJ
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ dường tròn tâm O đường kính AH cắt AB, AC lần lược tại E và F.
a/ Chứng minh tứ giác AEHF là hình chữ nhật.
b/ Chứng minh AE.AB = AF.AC
c/ Gọi I và K lần lượt là trung điểm của BH và HC. Chứng minh IE, KF là tiếp tuyến của dường tròn (O).
d/ Chứng minh SEFKI = \(\frac{1}{2}\) SABC (SEFKI, SABC là diện tích tứ giác EFKI và tam giác ABC)
Cho tam giác đều ABC nội tiếp ( O ) . Trên cung nhỏ BC lấy M. Vẽ ( I ) tiếp xúc trong với (O) tại M cắt dây MA,MB,MC tại A', B', C'
a) chứng minh tam giác A'B'C' đều
b) Từ A; B;C vẽ các tiếp tuyến AD, BE, CF với ( I ). Chứng minh AD=BE+CF