Cho tam giác ABC nhọn nội tiếp đường tròn (O) .Các đường cao AD,BE,CF cắt nhau tại H. Gọi K là giao điểm của 2 đường thẳng BC,EF. Đường thẳng đi qua F song song với AC cắt AK,AD tại M,N .Chứng minh MF=NF
cho tam giác ABC (AB<AC) có 3 góc nhọn nội tiếp đường tròn (O;R). CÁc đường cao AD,BE,CF cát nhau tại H
a) chứng minh rằng : -tứ giác ABDE nội tiếp được đường tròn
-chứng minh AE.AC=AF.AB
- chứng minh OA\(\perp\)EF
-gọi K là giao điểm của 2 đường thẳng BC và EF. Đường thẳng đi qua F song song vói AC cắt AK, AD lần lượt tại M và N .chứng minh MF=NF
Câu 4(3,0 điểm) Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn tâm O. Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. Gọi M là giao điểm của EF và BC. Qua B kẻ đường thẳng song song với AC cắt AM tại P và AD tại Q.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Chứng minh DFC = EFC.
c) Chứng minh BP = BQ.
Cho tam giác ABC nội tiếp đường tròn (O). Các đường cao AD,BE,CF cắt nhau tại H. Gọi I,J,M lần lượt là trung điểm của AH,EF,BC. P,Q lần lượt là các giao điểm của EF với các tiếp tuyến tại B và C của đường tròn (O). MF cắt AD tại L. ME cắt đường thẳng qua F và song song với BC tại K
a, Chứng minh MP//CF, MQ//BE.
b, Chứng minh IJ luôn đi qua điểm cố định khi (O) và BC cố định, A di động trên cung BC.
c, Tính góc giữa 2 đường thẳng IK và EL
Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O), các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh rằng tứ giác CDHE, BCEF nội tiếp
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC = ME.MF
c) Đường thẳng qua B song song với AC cắt AM, AH ần lượt tại I,K . Chứng minh HB là phân giác của IHK
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O), các đường cao AD, BE và CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF và BCEF nội tiếp.
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC = ME.MF.
c) AM cắt đường tròn (O) tại N. Đường thẳng qua B và song song với AC cắt AM tại I và cắt AH tại K. Chứng minh AN vuông góc HN và HI = HK.
Cho tam giác ABC nhọn nội tiếp (O) . AD,BE,CF là 3 đường cao của Tam giác ABC cắt nhau tại H. M là giao điểmcura EF và BC ,qua B kẻ đường thẳng song song với AC cắt AM và AD lần lượt tại P và Q . Chứng minh B là trung điểm củaPQ
Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O), các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh rằng tứ giác CDHE, BCEF nội tiếp
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC = ME.MF
c) Đường thẳng qua B song song với AC cắt AM, AH ần lượt tại I,K . Chứng minh HI = HK
Cho\(\Delta ABC\) nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt tại H. Kẻ đường kính AN. Gọi I là giao điểm của 2 đường thẳng BC và EF. Tia NH cắt (O) tại M
a) Chứng minh: tứ giác BCEF nội tiếp và 5 điểm A, M, E, H, F cùng thuộc một đường tròn.
b) Chứng minh 3 điểm I, M, A thẳng hàng .
c) Qua D, kẻ đường thẳng song song AC cắt AB và AI lần lượt tại K và L . Chứng minh : KA.CN = KL.CH