Vì AHC vuông
=> AC^2 = AH^2 + HC^2 ( định lý pytago đảo )
=> AC^2 = 144 + 25
=> AC^2 = 169
=> AC = 13
Áp dụng định lí Py-ta-go vào tam giác ABH ta được:
\(AB^2=AH^2+BH^2\)
Mà AB=20cm; AH=12cm
\(\Rightarrow20^2=12^2+BH^2\)
\(\Rightarrow400=144+BH^2\)
\(\Rightarrow BH^2=400-144\)
\(\Rightarrow BH^2=256\)
\(\Rightarrow BH=16\)(do BH >0) (cm)
Có BH+HC=BC
Mà BH=16cm;HC=5cm
=> BC=16+5=21(cm)
Vậy BC=21cm
k cho mình nha
Áp dụng định lí Py-ta-go vào \(\Delta ABH\)ta có:
\(AB^2=AH^2+BH^2\)
\(\Rightarrow20^2=12^2+BH^2\)
\(\Rightarrow BH^2=20^2-12^2\)
\(\Rightarrow BH^2=200-144=256\)
\(\Rightarrow BH=\sqrt{256}=16\left(cm\right)\)
Ta lại có \(BC=BH+HC\)
\(\Rightarrow BC=16+5=21\left(cm\right)\)
Áp dụng định lí Py-ta-go vào \(\Delta AHC\)ta có:
\(AC^2=AH^2+HC^2\)
\(\Rightarrow AC^2=12^2+5^2\)
\(\Rightarrow AC^2=144+25=169\)
\(\Rightarrow AC=\sqrt{169}=13\left(cm\right)\)
Vậy BC = 21 (cm) ; AC= 13 (cm)
Bạn newton7a sai nha 400 chư ko phải 200