Cho tam giác ABC có ba góc nhọn. Đường tròn (O;R) có đường kính BC cắt AB, AC lần lượt là F và E; BE cắt CF tại H. CMR:
a) Tứ giác AFHE nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác AFHE
b)) Tia AH cắt BC tại D. Cm : HE.HB = 2HD.HI
c) Cm: 4 điểm D,I,E,F cùng thuộc 1 đường tròn
Mọi người cho mình hỏi câu này làm sao ạ!!!!!!!!!!!!!!-
Cho tam giác ABC nhọn(AB<AC). Vẽ đường tròn tâm O có đường kính BC, cắt 2 cạnh AB và AC theo thứ tự tại F và E. Gọi H là giao điểm của BE và CF, AH cắt BC tại D. Gọi I là trđ AH.
a) CM: tứ giác AEHF nội tiếp đường tròn. Xác định tâm I của đường tròn này.
b) CM: AD vuông góc BC.
c) CM: tứ giác OEIF nội tiếp và 5 điểm O,D,E,I,F cùng thuộc 1 đường tròn.
Cho tam giác ABC (ab<ac) có 3 góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC,AB lần lượt tại E,F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC.
a. Cm: AD vuông góc với BC và AH.AD=AE.AC
b. Cm EFDO là tứ giác nội tiếp
c. Trên tia đối của DE lay điểm L sao cho DL=DF. Tính số đo góc BLC
d. Gọi R,S lần lượt là hình chiếu của B,C lên EF. Cm DE+DF=RS
Cho tam giác ABC nhọn (AB < AC) vẽ đường tròn tâm O có đường kính BC cắt hai cạnh AB và AC theo thứ tự tại E và F ,gọi H là giao điểm của BE và CF, AH cắt BC tại D. Gọi I là trung điểm AH
a. Chứng minh tứ giác AEHF nội tiếp đường tròn tâm I và AD vuông góc BC
b. Chứng minh tứ giác OEIF nội tiếp và 5 điểm O, D, E, I, F cùng thuộc một đường tròn
C. cho biết BC = 6 cm và góc A = 60 độ Tính độ dài OI
Cho tam giác nhọn ABC (AB<AC). Đường tròn tâm O đường kính BC cắt các cạnh AB,AC lần lượt tại F và E. Gọi H là giao điểm của BE và CF. Tia AH cắt BC tại D
a. Cm: tg AEHF và DOEF nt (đã làm được)
b. Gọi S là giao điểm của 2 đường thẳng BC và EF.Cm: OS.OD=Ob^2 (đã làm được)
c. Gọi I là giao điểm của AD với đường tròn (O). Cm: SI là tiếp tuyến của (O) (chưa giải ra)
d. Từ A kẻ tiếp tuyến AK đến đường tròn (O) (K là tiếp điểm). Cm: 3 điểm S,H,K thẳng hàng (chưa giải ra)
Cho tam giác nhọn ABC , đường tròn tâm O đường kính BC cắt AC và AB lần lượt tại E và F,BE và CF cắt nhau tại H. a. C/m: góc BFC=90°;AH vuông góc với BC tại D và AFHE là tứ giác nội tiếp b. Gọi I,K lần lượt là trung điểm của BF và CE. C/m AH.AD=AF.AB và IDOK nội tiếp
Cho tam giác ABC nhọn,đường tròn tâm O đường kính BC cắt AB , AC tại F và E. BE và CF cắt nhau tại H
a) chứng minh AH vuông góc với BC nhau tại H
b) gọi D là giao điểm của AH và BC. chứng minh AF.AB= AH.AD=AE.AC
c) Chứng minh H là tâm đường tròn nội tiếp tam giác DEF
Cho tam giác ABC có 3 góc nhọn. Đường tròn (O:R) có bán kính BC cắt AB,AC lần lượt tại E,F. BE cắt CF tại H
a) CM: Tứ giác AFHE nội tiếp
b) Tia AH cắt BC tại D, I là trung điểm AH.CM: HE.HB = 2 HI.HD
c) CM: 4điểm D,E,I,F cùng thuộc 1 đường tròn.
d) khi k di chuyển trên cung nhỉ bc, c/m tâm đường tròn ngoại tiếp tam giác dhk chạy trên 1 đường thẳng cố định
Cho ∆ABC nhọn, đường tròn tâm O có đường kính BC cắt AB, AC lần lượt ở D và E. Gọi H là giao điểm của BE và DC, K là giao điểm của AH và BC.
a) Tính số đo góc BDC và góc BEC.
b) Cm 4 điểm A, D, H, E cùng thuộc một đường tròn, xác định tâm I của đường tròn.
c) Gọi M là trung điểm HC. Cm IM ⊥ OM.
d) Cm tiếp tuyến tại D và E của đường tròn (O) cắt nhau tại I.