Lời giải:
Điểm H trong bài không đóng vai trò gì thì không nên đưa vào bài.
Vì $B,D$ đối xứng nhau qua $M$ nên $M$ là trung điểm $BD$
Tứ giác $ABCD$ có 2 đường chéo $AC, BD$ cắt nhau tại trung điểm $M$ của mỗi đường nên $ABCD$ là hình bình hành.
Lời giải:
Điểm H trong bài không đóng vai trò gì thì không nên đưa vào bài.
Vì $B,D$ đối xứng nhau qua $M$ nên $M$ là trung điểm $BD$
Tứ giác $ABCD$ có 2 đường chéo $AC, BD$ cắt nhau tại trung điểm $M$ của mỗi đường nên $ABCD$ là hình bình hành.
Cho tam giác ABC vuông tại A (AB < AC) có M là trung điểm BC. Gọi D là điểm đối xứng của A qua M. a) Chứng minh tứ giác ABCD là hình chữ nhật. b) Gọi AH là đường cao của tam giác ABC và K là điểm đối xứng với A qua H. Chứng minh rằng KD // BC, từ đó suy ra tứ giác BCDK là hình thang cân. c) Trên tia đối của tia CA lấy điểm E sao cho CE = CA. Chứng minh ba điểm K, D, E thẳng hàng
Cho tam giác ABC có 3 góc nhọn(AB<AC). Gọi H là trực tâm, O là giao điểm của 3 đường trung trực của tam giác. Gọi D là điểm đối xứng của điểm A qua O.
a)Chứng minh rằng tứ giác BHCD là hình bình hành
b)Gọi M là trung điểm của BC, chứng minh AH=2MO
Cho tam giác ABC có ba góc nhọn (AB < AC) , đường cao AH Gọi M,N,P lần lượt là trung điểm của các cạnh AB, AC, BC, MN, cắt AH tại I
a) Chứng minh I là trung điểm của AH
b) Lấy điểm Q đối xứng với P qua N Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN
d) Gọi K là trung điểm của MN, O là giao điểm của CK và PQ , F là giao điểm của MN và QC Chứng minh B,O,F thẳng hàng
Cho tam giác ABC nhọn (AB < AC). đường cao AH. Gọi D là trung điểm của AC, K là điểm đối xứng của H qua D.
a) Chứng minh tứ giác AHCK là hình chữ nhật.
b) Gọi I và E lần lượt là trung điểm của BC và AB. Chứng minh tứ giác EDCI là hình bình hành.
c) AH cắt DE tại M. BM cắt HE tại N.Gọi O là trung điểm của MI,. Chứng minh rằng C, O, N thẳng hàng.
Cho tam giác ABC nhọn (AB < AC). đường cao AH. Gọi D là trung điểm của AC, K là điểm đối xứng của H qua D.
a) Chứng minh tứ giác AHCK là hình chữ nhật.
b) Gọi I và E lần lượt là trung điểm của BC và AB. Chứng minh tứ giác EDCI là hình bình hành.
c) Chứng minh tứ giác EDIH là hình thang cân.
d) AH cắt DE tại M. BM cắt HE tại N. AN cắt BC tại L. Gọi O là trung điểm của MI, P là điểm đối xứng của L qua N. Chứng minh rằng C, O, N thẳng hàng.
cho tam giác ABC nhọn (AB < AC).gọi AH là đường cao.M,N,K lần lượt là trung điểm của AB, AC,BC
a) chứng minh tứ giác BMNK là hình bình hành.
b) gọi D là điểm đối xứng của H qua M. chứng minh tứ giác ADBH là hình chữ nhật.
c) gọi I là trung điểm NK. Chứng minh 3 điểm C,M,I thẳng hàng.
Cho tam giác ABC cân tại A. Gọi M và N lần lượt là trung điểm của AC và BC.
a) Chứng minh tứ giác AMNB là hình bình hành.
b) Gọi D là điểm đối xứng với B qua M. Chứng minh tứ giác ABCD là hình bình hành.
c) Gọi E là điểm đối xứng với A qua N. Chứng minh tứ giác ABEC là hình bình hành.
cho tam giác abc có 3 góc nhọn ab<ac. Gọi M,N,Q lần lượt là trung điểm của cạnh AB,AC,BC và AH là đường cao của tam giác ABC (H thuộc BC).
a) Chứng minh : Tứ giác BMNC là hình thang
b) Chứng minh: Tứ giác AMQN là hình bình hành
c) Gọi E là điểm đối xứng của điểm H qua điểm M
Chứng minh : Tứ giác AHBE là hình chữ nhật
d) Gọi K là hình chiếu của H trên AB. Gọi I,J lần lượt là trung điểm của AK và BE.
Chứng minh: Góc HIJ = 90
cho tam giác abc có 3 góc nhọn ab<ac. Gọi M,N,Q lần lượt là trung điểm của cạnh AB,AC,BC và AH là đường cao của tam giác ABC (H thuộc BC).
a) Chứng minh : Tứ giác BMNC là hình thang
b) Chứng minh: Tứ giác AMQN là hình bình hành
c) Gọi E là điểm đối xứng của điểm H qua điểm M
Chứng minh : Tứ giác AHBE là hình chữ nhật
d) Gọi K là hình chiếu của H trên AB. Gọi I,J lần lượt là trung điểm của AK và BE.
Chứng minh: Góc HIJ = 90