Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Đức Dương

Cho tam giác ABC nhọn (AB < AC) có 3 đường cao AE, BD, CK cắt nhau tại H

a. Chứng minh tam giác HKB đồng dạng tam giác HDC và CE.CB = CD.CA

b. Gọi S là giao điểm của 2 đường thẳng DK và BC . Chứng minh góc SBK= góc SDC

c. Gọi O là giao điểm của BD và KE. Từ O kẻ đường thẳng // với đường thẳng KD, đường thẳng này cắt AC tại I. Gọi M là giao điểm của EI và KD. Chứng minh DK=DM

Giúp mình câu C với.

Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 23:23

a: Xét ΔHKB vuông tại K và ΔHDC vuông tại D có

góc KHB=góc DHC

=>ΔKHB đồng dạng với ΔDHC

Xet ΔCDB vuông tại D và ΔCEA vuông tại E có

góc C chung

=>ΔCDB đồng dạng với ΔCEA

=>CD/CE=CB/CA

=>CD*CA=CE*CB

b: góc BKC=góc BDC=90 độ

=>BKDC nội tiếp

=>góc SBK=góc SDC


Các câu hỏi tương tự
Trần Chí Công
Xem chi tiết
Khaiminhhoang
Xem chi tiết
Shara Uno
Xem chi tiết
gffhgfv
Xem chi tiết
Nguyễn Quỳnh Anh
Xem chi tiết
Nguyễn Hữu Tuân
Xem chi tiết
tranhang
Xem chi tiết
Phạm Thị Thu Huyền
Xem chi tiết
Hải Anh Bùi
Xem chi tiết