Cho tam giác ABC (AB<AC) nội tiếp (O), M là trung điểm BC. Các điểm N, P thuộc đoạn BC sao cho MN=MP. Các đường thẳng AM, AN, AP cắt (O) lần lượt tại D, E, F. Chứng minh rằng BC, EF và tiếp tuyến của (O) tại D đồng quy.
Cho hình thang cân ABCD có AB // CD , AD = AB = BC. (K) là đường tròn đi qua A, B và tiếp xúc với AD, BC. P là điểm thuộc (K) và nằm trong hình thang . PA, PB lần lượt cắt CD tại E, F. BE, AF theo thứ tự cắt AD, BC ở M, N. Chứng minh rằng PM = PN.
Trong mặt phẳng Oxy, cho tam giác ABC cân tại A, đường thẳng AC có phương trình : 4x-3y+8=0 . Gọi H là trung điểm của BC, D là hình chiếu của H trên cạnh AC, I là trung điểm của HD, đường thẳng BD đi qua M(9,-12), đường thẳng AI có phương trình : 13x-16y+51=0. Viết phương trình đường thẳng BC
Bài 6: Cho tam giác ABC có AB = 8, AC = 9, BC = 10. Một điểm M nằm trên cạnh BC sao cho BM = 7. Tính độ dài đoạn thẳng AM.
Từ điểm M nằm ngoài đường tròn ( O ; R ). Kẻ 2 tiếp tuyến MB , MC với đường tròn , gọi I là trung điểm của MC . Tại BI cắt đường tròn tại A , tia MA cắt đường tròn tại D .
a ) So sánh tam giác AIC và tam giác IBC b ) Chứng minh : IM^2=IA.IB c ) Chứng minh BD // MC d ) Chứng minh IM là tiếp tuyến của đường tròn ngoại tiếp tam giác MAB e ) Khi góc BMC = 60 độ thì tứ giác IBDC là hình gì ? Tính diện tích của tứ giác MABCho hình vuông EFGH. Từ E, vẽ góc vuông xEy sao cho cạnh Ex cắt các đường thẳng Fg và GH theo thứ tự ở M và N còn cạnh Ey cắt hai đường thẳng trên lần lượt ở P và Q.
a) Chứng minh rằng các tam giác EMQ và ENP là các tam giác vuông cân
b) Đường thẳng QM cắt NP tại R. Gọi I và K theo thứ tự là trung điểm của PN và OM. Tứ giác EKRI là hình gì? Vì sao?
c) Chứng minh bốn điểm F, H, K, I thẳng hàng
cho tam giác abc vuông tại a và ab <ac , m là trung điểm của bc .trên tia đối của tia ma lấy điểm d sao cho ma =md .
a) chứng minh : ab=cd
b) so sánh góc cam và góc cdm
c) gọi i là trung điểm của ac . chứng minh tam giác ibd là tam giác cân
1) Cho tam giác ABC . Gọi M,N lần lượt là các điểm thoả mãn \(\overline{BM}=2\overline{MC}\), \(\overline{CN}=-3\overline{AN}\). Điểm I thuộc AM sao cho ba điểm B,I,N thẳng hàng.Biết \(x,y\)là các số tự nhiên nhỏ nhất thoả mãn \(x\overline{AM}=y\overline{AI}\). Tính giá trị của biểu thức \(x^2+xy+y^2\)
2) Tìm tham số \(m\) để phương trình \(m^2\left(x-1\right)+m=3mx\) có nghiệm đúng với mọi \(x\in R_{ }\)