Bài 5. ÔN TẬP CUỐI NĂM

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ha My

Bài 6: Cho tam giác ABC có AB = 8, AC = 9, BC = 10. Một điểm M nằm trên cạnh BC sao cho BM = 7. Tính độ dài đoạn thẳng AM.

Akai Haruma
17 tháng 2 2020 lúc 23:02

Lời giải:

$AB=8; AC=9; BC=10; BM=7; CM=3$

Áp dụng định lý cosin cho tam giác $ABM$ và $ACM$ ta có:

$AB^2=BM^2+AM^2-2.BM.AM.\cos \widehat{AMB}$

$AC^2=CM^2+AM^2-2.CM.AM\cos \widehat{AMC}$

$\Rightarrow$

$CM.AB^2=CM.BM^2+CM.AM^2-2BM.AM.CM\cos \widehat{AMB}$

$BM.AC^2=BM.CM^2+BM.AM^2-2CM.AM.BM\cos \widehat{AMC}$

Cộng theo vế:

$CM.AB^2+BM.AC^2=CM.BM^2+BM.CM^2+CM.AM^2+BM.AM^2$

$\Leftrightarrow 3.8^2+7.9^2=3.7^2+7.3^2+10.AM^2$

$\Rightarrow AM=\sqrt{\frac{549}{10}}$

Khách vãng lai đã xóa
Akai Haruma
2 tháng 2 2020 lúc 20:04

Lời giải:

$AB=8; AC=9; BC=10; BM=7; CM=3$

Áp dụng định lý cosin cho tam giác $ABM$ và $ACM$ ta có:

$AB^2=BM^2+AM^2-2.BM.AM.\cos \widehat{AMB}$

$AC^2=CM^2+AM^2-2.CM.AM\cos \widehat{AMC}$

$\Rightarrow$

$CM.AB^2=CM.BM^2+CM.AM^2-2BM.AM.CM\cos \widehat{AMB}$

$BM.AC^2=BM.CM^2+BM.AM^2-2CM.AM.BM\cos \widehat{AMC}$

Cộng theo vế:

$CM.AB^2+BM.AC^2=CM.BM^2+BM.CM^2+CM.AM^2+BM.AM^2$

$\Leftrightarrow 3.8^2+7.9^2=3.7^2+7.3^2+10.AM^2$

$\Rightarrow AM=\sqrt{\frac{549}{10}}$

Khách vãng lai đã xóa

Các câu hỏi tương tự
Natsu Dragneel
Xem chi tiết
Shinning
Xem chi tiết
Natsu Dragneel
Xem chi tiết
Egoo
Xem chi tiết
lu nguyễn
Xem chi tiết
Hà Linh
Xem chi tiết
Ha My
Xem chi tiết
Thiệu Nguyễn Đoàn
Xem chi tiết
Ha My
Xem chi tiết