Lời giải:
$AB=8; AC=9; BC=10; BM=7; CM=3$
Áp dụng định lý cosin cho tam giác $ABM$ và $ACM$ ta có:
$AB^2=BM^2+AM^2-2.BM.AM.\cos \widehat{AMB}$
$AC^2=CM^2+AM^2-2.CM.AM\cos \widehat{AMC}$
$\Rightarrow$
$CM.AB^2=CM.BM^2+CM.AM^2-2BM.AM.CM\cos \widehat{AMB}$
$BM.AC^2=BM.CM^2+BM.AM^2-2CM.AM.BM\cos \widehat{AMC}$
Cộng theo vế:
$CM.AB^2+BM.AC^2=CM.BM^2+BM.CM^2+CM.AM^2+BM.AM^2$
$\Leftrightarrow 3.8^2+7.9^2=3.7^2+7.3^2+10.AM^2$
$\Rightarrow AM=\sqrt{\frac{549}{10}}$
Lời giải:
$AB=8; AC=9; BC=10; BM=7; CM=3$
Áp dụng định lý cosin cho tam giác $ABM$ và $ACM$ ta có:
$AB^2=BM^2+AM^2-2.BM.AM.\cos \widehat{AMB}$
$AC^2=CM^2+AM^2-2.CM.AM\cos \widehat{AMC}$
$\Rightarrow$
$CM.AB^2=CM.BM^2+CM.AM^2-2BM.AM.CM\cos \widehat{AMB}$
$BM.AC^2=BM.CM^2+BM.AM^2-2CM.AM.BM\cos \widehat{AMC}$
Cộng theo vế:
$CM.AB^2+BM.AC^2=CM.BM^2+BM.CM^2+CM.AM^2+BM.AM^2$
$\Leftrightarrow 3.8^2+7.9^2=3.7^2+7.3^2+10.AM^2$
$\Rightarrow AM=\sqrt{\frac{549}{10}}$