\(\dfrac{1}{2}\cdot BD\cdot AC=\dfrac{1}{2}\cdot CE\cdot AB\)
=>CE*AB=BD*AC
=>CE*4=3,5*5=17,5
=>CE=4,375cm
\(\dfrac{1}{2}\cdot BD\cdot AC=\dfrac{1}{2}\cdot CE\cdot AB\)
=>CE*AB=BD*AC
=>CE*4=3,5*5=17,5
=>CE=4,375cm
Cho góc xAy có số đo là 120 độ. Trên các tia Ax và Ay lần lượt lấy hai điểm B và C tùy ý. Kẻ các đường phân giác BD; CE của tam giác ABC (D thuộc cạnh CA, E thuộc cạnh AB). BD cắt CE ở I. Qua I kẻ đường thẳng song song với BC, cắt AB và AC tương ứng ở M và N. Tính chu vi của tam giác AMN, biết AB = 5cm, AC = 7cm.
Bài. Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC). Kẻ CE vuông góc với AB (E thuộc AB). BD và CE cắt nhau tại I. Là Là a) Cho BC = 5cm, DC = 3cm. Tính độ dài BD. b) Chứng minh rằng BD =CE. c) thẳng AI cắt BC tại H. Chứng minh rằng AI vuông góc với BC tại H.
Cho tam giác ABC có góc C tù. Kẻ BD vuông góc AC và CE vuông góc AB(D thuộc AC,E thuộc AB).H là giao điểm của BD và CE. Biết HC=AB. Tính góc C
Cho tam giác ABC có C<90. Kẻ BD vuông góc với AC (D thuộc AC); CE vuông góc với AB (E thuộc AB); BD cắt CE tại H. Biết AB=HC, hãy tính góc C.
Cho tam giác ABC có AB=AC,kẻ BD vuông góc AC (D thuộc AC ),CE vuông góc AB (E thuộc AB)
a,BD cắt CE tại E,chứng minh tam giác EBF=TAM GIÁC BCE
Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh rằng BD // CE
cho tam giác ABC cân tại A ( A < 90 độ ) . Kẻ BD vuông góc Ac ( D thuộc AC ) , CE vuông góc AB ( E thuộc AB ) , BD và CE cắt nhau tại H . a, CM : BD = CE . b, CM : tam giác BHC cân . c, CM : AH là đường trung trực của BC . d, TRên tia BD lấy điểm K sao cho D là trung điểm của BK . So sánh ECB và DKC
Cho tam giác ABC có AB=AC(góc A<90 độ ).Kẻ BD vuông góc vowisAC(D thuộc AC).Kẻ CE vuông góc với AB(E thuộc AB).Chứng minh BD=CE
Cho tam giác ABC có AB=AC kẻ BD vuông góc AC; CE vuông góc AB (D thuộc AC; E thuộc AB) BD cắt CE ở O. Chứng minh:
a) BD=CE
b) tam giác OEB= tam giác ODC
c) AO là tia phân giác của ^BAC
cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). gọi O là giao điểm của BD và CE. chứng min
a) BD=CE
b) tam giác OEB= tam giác OCD
c) AO là tia phân giác của góc BAC ( lời giải chi tiết và hình vẽ )