1, Cho tam giác ABC vuông tại A, AB=3 và AC=4. Vector CB+vector AB có độ dài là bao nhiêu?
2, Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm các đoạn thẳng AB và CD. Tìm đẳng thức liên hệ của vector IJ.
3, Cho 4 điểm A, B, C, D. Tìm đẳng thức lện hệ của vector AB+vector CD.
4, Cho 6 điểm A, B, C, D, E, F. Vector AB+vector CD+vector FA+vector BC+vector EF+vector DE=?
cho tam giác ABC. Các điểm M và N thỏa mãn : vecto MN= 2 vecto MA- vecto MB+ vecto MC
a) tìm điểm I sao cho 2 vecto IA - vecto IB + vecto IC = vecto 0
b) CM : đường thẳng MN luôn đi qua một điểm cố định
c) Gọi P là trung điểm BN . CM đường thẳng MP luôn đi qua một điểm cố định
Cho tam giác ABC có trọng tâm G, gọi I là trung điểm BC. Tìm tập hợp điểm M thỏa mãn: \(2\left|\overrightarrow{MC}+\overrightarrow{IA}-\overrightarrow{IM}-\overrightarrow{BM}\right|=3\left|\overrightarrow{AB}+\overrightarrow{MC}-\overrightarrow{AM}\right|\)
Cho tam giác ABC, E là trung điểm AB và F thuộc cạnh AC thỏa mãn AF = 2FC.
a) Gọi M là trung điểm BC và I là điểm thỏa mãn 4EI = 3FI. Cminh 3 điểm A, M, I thẳng hàng.
b) Lấy điểm K là trung điểm EF. Tìm P thuộc BC sao cho A, K, P thẳng hàng.
Giải câu B thôi Ạ Đang Bí câu B mong thánh nhân xuống Giúp (Giải câu b ts đoạn \(\overrightarrow{AP}=m\overrightarrow{AK}\) Rồi m không biết khử m bằng cách nào thánh nhân nào giúp làm rõ cho em cái phần đó nhé thanks nhiều)
CHo tam giác ABC. M,N lần lượt là trung điểm của AB, AC. CMR:
a, \(\overrightarrow{AB}=\frac{-2}{3}\overrightarrow{CM}-\frac{4}{3}\overrightarrow{BN}\)
b, \(\overrightarrow{AC}=\frac{-4}{3}\overrightarrow{CM}-\frac{2}{3}\overrightarrow{BN}\)
c, \(\overrightarrow{MN}=\frac{1}{3}\overrightarrow{BN}-\frac{1}{3}\overrightarrow{CM}\)
Câu 1:Cho hình vuông ABCD cạnh a.Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right|\)?
Câu 2:Cho AM thỏa mãn \(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}\) thì điểm M là gì?
Câu 3:Cho tam giác ABC,có bao nhiêu điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=5\)?
Câu 4:Cho tam giác ABC.Điểm M thỏa mãn \(\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{CM}=\overrightarrow{0}\) thì điểm M là gì?
Câu 5:Cho hình bình hành ABCD.Tập hợp tất cả các điểm M thỏa mãn đẳng thức \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{0}\) là:
A.một đường tròn
B.một đường thẳng
C.một điểm
D.một đoạn thẳng
Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR:
Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE
Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR:
a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD
b) Vecto AB + vecto CD = Vecto AD + vecto CB
c)Vecto AB - vecto CD = Vecto AB - vecto BD
Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB + vecto IK + vecto IC = Vecto 0
Bài 4: Cho hình bình hành ABCD với O là tâm. CMR:
a) Vecto CO - vecto OB = Vecto BA
b) Vecto AB - vecto BC = Vecto DB
c) Vecto DA - vecto DB = Vecto OD - vecto OC
d) Vecto DA - vecto DB + vecto DC = Vecto 0
Bài 4: Cho tam giác ABC vuông cân tại A, trọng tâm G. cạnh AB=a. Gọi I là trung điểm BC. Tính độ dài vecto sau:
a) Vecto a= vecto AB + vecto AC
b) Vecto b= vecto AB + vecto AC + vecto AG
c) Vecto c= vecto BA + vecto BC
d) Vecto d= vecto AB - vecto AC + vecto BI
B1: Cho tam giác ABC đều cạnh a
a) tính độ dài véc tơ AB + AC và CA + BA
b) Gọi M,N lần lượt là trung điểm của BC và AC. Xác định và tính độ dài véc tơ AM + BN
B2: Cho 5 điểm A,B, C , D ,E. Cmr: CD+EA=CA +ED
Cho hình chữ nhật ABCD tâm O, gọi I là trung điểm DC. CMR vtAB + 2vtAD = 2vtAI