Xét ΔABC có
\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\widehat{A}\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\widehat{A}}{2}\)
Xét ΔIBC có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BIC}=180^0-90^0+\dfrac{\widehat{A}}{2}\)
\(\Leftrightarrow\widehat{BIC}=90^0+\dfrac{\widehat{A}}{2}\)