Dùng kết quả: Nếu B, C, M thẳng hàng và A M → = x A B → + y A C → thì x + y = 1 để loại các phương án A, B, D.
Đáp án C
Dùng kết quả: Nếu B, C, M thẳng hàng và A M → = x A B → + y A C → thì x + y = 1 để loại các phương án A, B, D.
Đáp án C
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Cho tam giác ABC với A = (1; 4), B = (2; – 5 ), C = (0; 7). Điểm M nằm trên trục Ox sao cho vectơ M A → + M B → + M C → có độ dài nhỏ nhất. Tọa độ điểm M là:
A. M(5; 0)
B. M(–2; 0)
C. M(3; 0)
D. M(1; 0)
Bài 1 Cho A (2; 0) , B(- 3; 4) , C(1; - 5); 1)Cmn: A, B, C l a^ - 3 đỉnh của 1 tam giác 2) Tìm tọa độ trọng tâm G của o ABC 3) Tìm D sao cho ABCD là hình bình hành. 4) Gìm M sao cho 2 MẢ + vec MB; +3 vec MC = 0 5, 5) Tìm N sao cho A là trọng tâm A.BNC 6) Tìm E sao cho A là trung điểm của BE 7)Tìm tọa độ trực tâm 1 của △ABC 8) Tìm MEOX: MA = MB 9)Gọi R, Tìm tọa độ B Q, R sao cho A, B, C lần là trung điểm của PQ, QR và RP. 10) tìm 1 đối xứng với Cqua B GIÚP MÌNH VỚI Ạ
: Cho tam giác ABC có ba đình A(4; 3) B(2; - 1) C(- 2; 5) . b) Tìm tọa độ điểm M thuộc trục tung sao cho | overleftrightarrow MA + overleftrightarrow MB | ngắn nhất a) Tìm tọa độ trọng tâm G của tam giác.
Cho tam giác ABC có các cạnh AB = c, AC = b, BC = a. Tìm điểm M sao
cho vecto a\(\overrightarrow{MA}\) + b\(\overrightarrow{MB}\) + c\(\overrightarrow{MC}\) có độ dài nhỏ nhất?
Cho ba điểm A (0,6) B(-3,2) C(5,-1)
A ) chứng minh rằng A , B ,C lập thành một tam giác
B ) Tìm tọa độ điểm M ,N , P lần lượt là trung điểm của AB , BC và CA
C ) Tìm tọa độ điểm D sao cho A là trọng tâm tam giác BCD
D ) Tìm tọa độ điểm E sao cho tứ giác ABEC là hình bình hành
Tam giác ABC có a = 6; b = 4 2 ; c = 2; gọi M là điểm trên cạnh BC sao cho BM = 3 . Độ dài đoạn AM bằng bao nhiêu ?
A. 5
B. 9
C. 3
D. 6
Trong mặt phẳng tọa độ Oxy, Cho tam giác ABC biết A(–2 ; 2), B(2 ; – 1), C(5 ; 3 ) và điểm E(–1; 0 ). a) Chứng minh rằng tam giác ABC cân.Tính diện tích tam giác ABC. b) Tìm tọa độ các điểm M(m; 2m-5) sao cho MO=√5AE5AE ( biết O là gốc tọa độ và m lớn hơn 0 ).
Cho A(m;3) B(2;1) C(-4;5) a) tìm điều kiện của m để A,B,C là 3 đỉnh của một tam giác b) tìm toạ độ trọng tâm G của tam giác ABC theo m. Xác định m để G nằm trên đường thẳng d: { x= 1+t { y= 5-2t