Cho tam giác ABC. Gọi M là trung điểm của AB, D là trung điểm của BC, N là điểm thuộc AC sao cho vecto CN = 2vectoNA. K là trung điểm MN. Chứng minh :
a) vecto AK = 1/4 vecto AB + 1/6 vecto AC
b) vecto KD = 1/4 vecto AB + 1/3 vecto AC
Cho tam giác ABC điểm E thuộc cạnh AB sao cho \(AE=\dfrac{1}{2}BE\), điểm F thuộc cạnh AC sao cho AF=2FC . G là trọng tâm tam giác ABC
a) Tính \(\overrightarrow{AG}\) theo \(\overrightarrow{AE,}\overrightarrow{AF}\) . AG cắt EF tại I. Xác định tỉ số \(\dfrac{AI}{AG}\)
b) Gọi P là trung điểm của EF. Tính \(\overrightarrow{AP}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\) . AP cắt BC tại K. Xác định K và tính \(\dfrac{AP}{AK}\)
cho tam giác ABC vuông cân tại A, AB=a; M là trung điểm của AB; điểm N thuộc AC, sao cho vecto CN =2vecto NA; K là trung điểm MN; D là trung điểm BC.
a) CM: AM+KN=AN+KM (vecto)
b) PT vecto KD theo 2 vecto AB,AC
c) Tính vecto KD=?
Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NA = 2NC. Gọi K là trung điểm của MN. Gọi D là trung điểm của BC. Hãy biểu diễn \(\overrightarrow{KD}\) theo các vectơ \(\overrightarrow{AB} \) và \(\overrightarrow{AC}\)
Cho tan giác ABC đều cạnh a, I là điểm trên cạnh BC sao cho BC = 3BI và J là trung điểm của AB.
a) Tính |vecto AB + vecto AC|
b) Chứng minh vecto AI = 2/3vecto AB + 1/2vecto AC.
c) Gọi M là điểm thoả : 3vecto MA + vecto MB - 2vecto MC = vecto 0.
d) Gọi N là điểm thoả : |vecto NA + vecto NB| = |vecto NB + vecto NC. Chứng minh điểm N thuộc một đường thẳng cố định.
giúp mình với ạ :((
Cho tam giác ABC, M là trung điểm AB. N ϵ AC, NC=2NA, K là trung điểm MN, D là trung điểm BC. Chứng minh vectoKD = 1/4 vectoAB + 1/3vectoAC
Cho tam giác ABC đều cạnh a, I là điểm trên BC sao cho\(\overrightarrow{BC}=3\overrightarrow{BI}\) và J là trung điểm AB.
Gọi N là điểm thỏa:\(\left|\overrightarrow{NA}+\overrightarrow{NB}\right|=\left|\overrightarrow{NB}+\overrightarrow{NC}\right|\).Chứng minh N thuộc một đường thẳng cố định
cho tam giác ABC có M là trung điểm của BC , N là điểm thuộc cạnh AC sao cho AN=2NC.Gọi I là giao điểm của AM và BN .Tính \(\frac{AI}{AM}\)
KÍ HIỆU VECTOR MÌNH CHO THÀNH DẤU ↓ NÀY NGHEN CÁC BẠN.
1.cho ↓a=↓AB và điểm O. Tìm điểm M, N sao cho: ↓OM=3↓a;↓ON=-4↓a
2.Cho đoạn thẳng AB và điểm M trên AB sao cho 5AM=AB. Tìm số thực k thỏa:
a.↓AM=k.↓AB b.↓MA=k.↓MB c.↓MA=k.↓AB
3.Cho tam giác ABC, các đg tr.tuyến AK,BM, tính các vec-tơ ↓AB; ↓BC; ↓CA theo hai vec-tơ ↓u=↓AK; ↓v=↓BM
4.Cho tam giác ABC, lấy điểm M∈BC sao cho ↓MB=3↓MC. Phân tích vec-tơ ↓AM theo hai vec-tơ ↓u=↓AB; ↓v=↓AC
5.Cho △ABC. Hãy xác định điểm M thỏa mãn điều kiện: ↓MA-↓MB+↓MC=↓0