G là trung điểm BD \(\Rightarrow\overrightarrow{BG}=\overrightarrow{GD}\)
Gọi M là trung điểm BC \(\Rightarrow\) GM là đường trung bình tam giác BCD
\(\Rightarrow\overrightarrow{GM}=\frac{1}{2}\overrightarrow{DC}\Rightarrow\overrightarrow{DC}=\overrightarrow{AG}\)
\(\overrightarrow{AB}=\overrightarrow{AG}+\overrightarrow{GB}=\overrightarrow{AG}+\overrightarrow{DG}=\overrightarrow{AG}+\overrightarrow{DA}+\overrightarrow{AG}=2\overrightarrow{AG}-\overrightarrow{AD}=2\overrightarrow{a}-\overrightarrow{b}\)
\(\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AD}+\overrightarrow{AG}=\overrightarrow{a}+\overrightarrow{b}\)