Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Quang Thiên

Cho tam giác ABC, đường trung tuyến AM, tia phân giác của góc AMB cắt AB ở D, tia phân giác của góc AMC cắt AC ở E.
a, Chứng minh rằng: DE//DC.
b, Gọi I là giao điểm của AM và DE. Chứng minh rằng: DI=IE.
c, Tính IE, biết: BC=30cm, AM=10cm.

Trần Bảo Như
6 tháng 8 2018 lúc 17:09

Hình bạn tự vẽ nha.

a, \(\Delta ABC\) có: AM là đường trung tuyến của \(\Delta ABC\)\(\Rightarrow BM=MC\)\(AI=\frac{2}{3}AM\)

 \(\Delta AMB\)có: MD là phân giác của \(\widehat{AMB}\)\(\Rightarrow\frac{AD}{DB}=\frac{AM}{MB}\)(tính chất đường phân giác trong tam giác) (1)

\(\Delta AMC\)có: ME là phân giác của \(\widehat{AMC}\)\(\Rightarrow\frac{AE}{EC}=\frac{AM}{MC}\)(tính chất đường phân giác trong tam giác) (2)

Từ (1), (2) và \(BM=MC\left(cmt\right)\Rightarrow\frac{AD}{DB}=\frac{AE}{EC}\)

\(\Delta ABC\)có: \(\frac{AD}{DB}=\frac{AE}{EC}\left(cmt\right)\Rightarrow DE//BC\)(định lý Ta-lét đảo)

b, \(\Delta ABM\)có: \(DI//BM\left(cmt\right)\Rightarrow\frac{DI}{BM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (3)

\(\Delta AMC\)có: \(IE//MC\left(cmt\right)\Rightarrow\frac{IE}{CM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (4)

Từ (3), (4) và \(BM=MC\left(cmt\right)\Rightarrow DI=IE\)

c, Ta có: \(\frac{IE}{CM}=\frac{AI}{AM}\left(cmt\right)\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}AM}{AM}\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}.10}{10}\)\(\Leftrightarrow\frac{IE}{15}=\frac{2}{3}\)\(\Leftrightarrow IE=10\left(cm\right)\)


Các câu hỏi tương tự
Dũng Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Hoàng Châu
Xem chi tiết
Sherwin-William
Xem chi tiết
Tên của mình ngắn lắm nh...
Xem chi tiết
thuỳ anh
Xem chi tiết
Chi Mr. (Mr.Chi)
Xem chi tiết
Nguyễn Mai Thu
Xem chi tiết
Pham Trong Bach
Xem chi tiết