1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là 2 tia phân giác của góc xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB, EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC
Cho ta giác ABC cân tại A. Vẽ AH vuông góc với BC tại H. Trên đoạn CH lấy D. Trên tia đối của tia CB lấy E sao cho CE=BD. Các đường thẳng vuông góc với BC kẻ từ D và E lần lượt cắt AB và AC tại M và N
A, CM: BM=CN
B, Đường thẳng vuông góc với AC tại C cắt AH tại O. CM tam giác OMN cân
Cho tam giác ABC , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA = HD. a/ Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD. b/ Chứng minh CA = CD và BD = BA. c/ Cho góc ACB = 450.Tính góc ADC..
cho tam giác ABC có 3 góc đều nhọn. đường cao AH vuông góc với BC tại H .trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a) CM BC và CB lần lượt là tia phân giác của các góc ABD và góc ACD
b) CM CA = CD và BD=BA
c) cho góc ACB = 45 '. tính góc ADC
d) đường cao AH phải có thêm điều kiện j thì AB // CD
cho tam giác ABC có 3 góc nhọn kẻ AH vuông góc với BC tại H trên tia đối của tia HAlay điểm D sao cho HA=HD c/m BC và CB lần lượt là các tia phân giác của các góc ABD và ACD
Cho tam giác ABC có 3 góc nhọn , đường thẳng AH vuông góc với BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD .
a) Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và acd
b) Chứng minh CA=CD và BD=BA
c) Cho góc ACB=45°.Tính góc ADC.
d)Đường cao AH phải có thêm điều kiện gì thì AB//cd
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho Ha=Hd
a) chứng minh tam giac abh= tam giác DBH và tam giác AbD là tam giác cân
b) Gọi M,N lần lượt là trung điểm của Ac,Dc, G là giao điểm của dm và hc. Chứng minh 3 điểm A, g,n thẳng hàng
Cho tam giác ABC . Kẻ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = MA a)Cm tam giác ABM = tam giác ECM b)Kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm D sao cho HD = HA Chứng minh BC là tia phân giác của góc ABD và BD = CE c) Hai đường thẳng BD và CE cắt nhau tại K . Chứng Minh Tam góc BCK cân