Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Nguyễn Tùng

Cho tam giác ABC , đường cao AH . Gọi M là trung điểm của cạnh BC . Qua M kẻ các đường thẳng song song với AB và AC , chúng cắt các cạnh AC và AB theo thứ tự tại E và D .
a) Cmr : Tứ giác ADME là hình bình hành . Gọi O là giao điểm của AM và DE . Cmr : Tam giác OAH cân .
b) Tứ giác tạo thành từ 4 điểm D , E , M , H là hình gì ? Tại sao ?
c) Tìm điều kiện của tam giác ABC để tứ giác ADME là hình chữ nhật .
Trong trường hợp này hãy xác định vị trí của điểm M trên cạnh BC để độ dài đoạn thẳng DE nhỏ nhất

Kirito Asuna
7 tháng 11 2021 lúc 9:21

1) ADME là h.b.h (vì có 2 cặp cạnh đối song song)
2) Vì ADME là hình chữ nhật nên O là trung điểm 2 đường chéo AM và DE.
Xét tam giác AHM vuông tại H, đường trung tuyến HO, khi đó HO = AO = OM
Vậy tam giác AHO cân ở O
3)
a, Tam giác ABC vuông tại A nên ˆDAE=900DAE^=900
Mà ADME là h.b.h nên tứ giác ADME là hình chữ nhật
b, Vì tứ giác AEMD là hình chữ nhật nên ED=AM
Để DE có độ dài nhỏ nhất thì AM có độ dài nhỏ nhất hay M là chân đường vuông góc hạ từ A xuống BC

Khách vãng lai đã xóa
Nguyễn Đình Anh 	Đức
7 tháng 11 2021 lúc 18:14
hello bn mình là đức
Khách vãng lai đã xóa
Nie =)))
8 tháng 11 2021 lúc 23:08

undefined

Cre : GG 

HT ;vvv

Khách vãng lai đã xóa

Các câu hỏi tương tự
Bảo Ngọc Phan Trần
Xem chi tiết
Khánh An
Xem chi tiết
•长ąŦ๏Ʀเ•
Xem chi tiết
Nhàn Nguyễn
Xem chi tiết
shoppe pi pi pi pi
Xem chi tiết
C-Chi Nợn
Xem chi tiết
Thị Hồng Nguyễn
Xem chi tiết
Trần Đàn
Xem chi tiết
My Love bost toán
Xem chi tiết