\(\left|\overrightarrow{BA}-\overrightarrow{BI}\right|=\left|\overrightarrow{IA}\right|=IA=\dfrac{8\sqrt{3}}{2}\)
\(\left|\overrightarrow{BA}-\overrightarrow{BI}\right|=\left|\overrightarrow{IA}\right|=IA=\dfrac{8\sqrt{3}}{2}\)
Cho tam giác ABC cạnh =8,gọi I là trung điểmBC.Tính vectơ BA-BI
cho tam giác ABC đều cạnh bằng 8, gọi I là trung điểm BC. Tính | BA - BI |
Cho tam giác ABC . Gọi D là điểm sao cho B D → = 2 3 B C → và I là trung điểm của cạnh AD , M là điểm thỏa mãn A M → = 2 5 A C → Vectơ B I → được phân tích theo hai vectơ B A → v à B C → .Hãy chọn khẳng định đúng trong các khẳng định sau?
Cho tam giác ABC có M là trung điểm AB, N là điểm trên cạnh AC sao cho AN = 2 NC. Gọi K là trung điểm MN. Hãy phân tích vectơ AK theo vectơ AB và vectơ AC.
Cho tam giác đều abc có cạnh ab=4cm, gọi M là trung điểm cạnh bc .tính độ dài vecto bm-ba.
Cho tam giác ABC có trọng tâm G . Gọi I là trung điểm CG và M,N là các điểm thỏa mãn vectơ MN = vectơ MA + vectơ MB + 4 vectơ MC . Chứng minh rằng 3 điểm M, I , N thẳng hàng.
Cho tam giác ABC gọi M,N,P lần lượt là trung điểm của các cạnh AB,AC,BC a) Tìm các vectơ cùng phương AM b) Tìm các vectơ cùng hướng MN c) Tìm các vectơ ngược hướng BC
Cho tam giác ABC đều cạnh a có trọng tâm G và điểm I thỏa vecto IA -2 vectơ IB +4 vectơ IC= vectơ 0 tính biểu thức P= vectơ IA.(vtAB+vtAC) theo a
Câu 2. Cho tam giác đều DBC có cạnh bằng BC= 3a, BI là đường trung tuyến của tam giác và G là trọng tâm của tam giác ABC. Tính
tính BG , BD+BC