1) ta co ket qua nhu sau:
sinAcosA+cosAcosB = sinAsinB+sinAcosA
<=> cosAcosB-sinAsinB=0
<=>cos(A+B)=0
<=> -cosC=0 (vi A+B+C=180)
hay cosC=0 => C=90
1) ta co ket qua nhu sau:
sinAcosA+cosAcosB = sinAsinB+sinAcosA
<=> cosAcosB-sinAsinB=0
<=>cos(A+B)=0
<=> -cosC=0 (vi A+B+C=180)
hay cosC=0 => C=90
Dựa vào các công thức cộng đã học:
sin(a + b) = sina cosb + sinb cosa;
sin(a – b) = sina cosb - sinb cosa;
cos(a + b) = cosa cosb – sina sinb;
cos(a – b) = cosa cosb + sina sinb;
và kết quả cos π/4 = sinπ/4 = √2/2, hãy chứng minh rằng:
a) sinx + cosx = √2 cos(x - π/4);
b) sin x – cosx = √2 sin(x - π/4).
Giả sử A, B, C là ba góc của tam giác ABC, chứng minh rằng: sin A + sin B + sin C sin A + sin B - sin C = c o t A 2 c o t B 2
Giả sử A, B, C là ba góc của tam giác ABC, chứng minh rằng: sin A + sin B + sin C = 4 cos A 2 cos B 2 cos C 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B , SA(ABC) . Kẻ AH , AK lần lượt vuông góc với SB , SC tại H và K , có SA = AB = a .
1) Chứng minh tam giác SBC vuông .
2) Chứng minh tam giác AHK vuông và tính diện tích tam giác AHK .
3) Tính góc giữa AK và (SBC) .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy.
a) Chứng minh tam giác SBC vuông
b) Gọi H là chân đường cao vẽ từ B của tam giác ABC.
Chứng minh (SAC) ⊥ (SBH)
c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC)
Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung đáy BC. Gọi I là trung điểm của cạnh BC.
a) Chứng minh rằng BC vuông góc với mặt phẳng (ADI)
b) Gọi AH là đường cao của tam giác ADI, chứng minh rằng AH vuông góc với mặt phẳng (BCD).
Trong mặt phẳng (α) cho một tam giác ABC bất kì. Chứng minh rằng có thể xem tam giác ABC là hình chiếu song song của một tam giác đều nào đó.
Cho tứ diện ABCD có hai mặt ABC và ABD là các tam giác đều chứng minh rằng AB vuông góc với CD
cho hình chóp S.ABC đáy là tam giác vuông (AC vuông CB) cạnh bên SA vuông góc với (ABC)
a) chứng minh BC vuông (SAC)
b) CK là đường cao tam giác ABC. Chứng minh CK vuông SB