Áp dụng Menelaus:
\(\dfrac{AK}{BK}\cdot\dfrac{BH}{CH}\cdot\dfrac{CI}{AI}=1\Leftrightarrow\dfrac{1}{2}\cdot\dfrac{BH}{HC}\cdot1=1\\ \Leftrightarrow\dfrac{BH}{HC}=2\Leftrightarrow\dfrac{HC}{HB}=\dfrac{1}{2}\)
Áp dụng Menelaus:
\(\dfrac{AK}{BK}\cdot\dfrac{BH}{CH}\cdot\dfrac{CI}{AI}=1\Leftrightarrow\dfrac{1}{2}\cdot\dfrac{BH}{HC}\cdot1=1\\ \Leftrightarrow\dfrac{BH}{HC}=2\Leftrightarrow\dfrac{HC}{HB}=\dfrac{1}{2}\)
Bài 5. Cho tam giác ABC có I là trung điểm của AC. Kéo dài CB thêo một
đoạn BH bằng \(\dfrac{1}{2}\)BC. IH cắt BC tại K. Muốn tính \(\dfrac{KH}{KI}\), hãy chọn tam giác
thích hợp để viết đẳng thức Menelaus, chứng minh đẳng thức đó rồi tính
\(\dfrac{KH}{KI}\)
Cho tam giác nhọ ABC, các đường cao BE,CF cắt nhau tại H. Gọi M là trung điểm BC. Đường thẳng vuông góc với HM tại H cắt AB và AC
theo thứ tự P và Q.Chứng minh rằng
a)Tam giác AHP đồng dạng với tam giác CMH
b) H là trung điểm PQ
c) Trên các đoạn HB, HC lần lượt lấy các điểm I,K tùy ý sao cho HI=CK. Chứng minh đường trung trực của đoạn thẳng IK luôn đi qua 1 điểm cố định
Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 3,5cm và HC = 9cm. Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác ABC thành hai phần có diện tích bằng nhau. Tính CE.
A. 10cm
B. 6cm
C. 5cm
D. 7,5cm
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh BC thành hai đoạn thẳng HB = 7cm và HC = 18cm. Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác ABC thành hai phần có diện tích bằng nhau. Tính CE.
A. 15cm
B. 12cm
C. 10cm
D. 8cm
Cho tam giác ABC vuông tại A(AC>AB). Vẽ đường cao AH(H∈BC). Trên tia đối tia BC lấy K sao cho KH=HA. Qua K kẻ đường thẳng song song với AH cắt đường thẳng AC tại P. Gọi Q là trung điểm BP. AQ cắt BC tại I. CMR: \(\dfrac{AH}{HB}-\dfrac{BC}{IB}=1\)
Cho tam giác ABC vuông tại A, đường cao AH, HB=9cm; HC=16cm. a) chứng minh : AB^2 = HB.BC b) Tính AB; AC; AH c) Phân giác của góc B cắt AH tại I, từ I kẻ đường thẳng song song với BC cắt AC tại K. Chứng minh AK/KC = AB/HC d) Gọi E là giao điểm của BI với AC chứng minh tam giác KIE đồng dạng với tam giác ABI
Cho tam giác ABC vuông ở A có đường cao AH ( HB<HC). Trên HC lấy điểm D sao cho HD=AB,từ D kẻ đường thẳng vuông góc với BC cắt AC tại E. Gọi M là trung điểm BE . Chứng minh AB=BE và tính góc BHM.
Cho tam giác ABC vuông tại A, lấy điểm D trên cạnh BC. Qua điểm D kẻ đường
thẳng vuông góc với BC, cắt AC và AB lần lượt tại E và F.
a) Chứng minh rằng tam giác BDF đồng dạng với tam giác EDC. Từ đó chỉ ra rằng:
DB.DC = DE.DF.
b) Gọi AH là đường cao của tam giác ABC (H thuộc BC), biết HB = 3cm, HC =
12cm. Tính độ dài đường cao AH.
Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{HB}{HC}=\) \(\dfrac{9}{16}\)
Tính \(\dfrac{AB}{AC}\)