Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB ^ , ABC ^ , BCA ^ đều là góc nhọn. Gọi M là trung điểm của đoạn AH.
3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF.
4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh DIJ ^ = DFC ^ .
Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB ^ , ABC ^ , BCA ^ đều là góc nhọn. Gọi M là trung điểm của đoạn AH.
1) Chứng minh tứ giác AEHF nội tiếp đường tròn.
2) Chứng minh CE.CA = CD.CB.
cho tam giác ABC nội tiếp đường tròn (O) có ba góc <CAB, <ABC, <BCA đều là góc nhọn. VẼ đường kính AD của đường tròn (O). gọi E, k lần lượt là giao điểm của hai đường thẳng AC và BO, AC và BD. tiếp tuyến của đường tròn (O) tại B cắt đường thẳng CD tại điểm F.
a) chứng minh 4 điểm B, E, C, F cùng thuộc một đường tròn.
b) chứng minh EF song song với AB. chứng minh DE vuông góc vs FK.
cho tam giác ABC nội tiếp đường tròn (O) có ba góc <CAB, <ABC, <BCA đều là góc nhọn. VẼ đường kính AD của đường tròn (O). gọi E, k lần lượt là giao điểm của hai đường thẳng AC và BO, AC và BD. tiếp tuyến của đường tròn (O) tại B cắt đường thẳng CD tại điểm F.
a) chứng minh 4 điểm B, E, C, F cùng thuộc một đường tròn.
b) chứng minh EF song song với AB. chứng minh DE vuông góc vs FK.
giúp mình vs mình cảm ơn :)))
cho tam giác nhọn abc có hai đường cao be và cf cắt nhau tại h
a) chứng minh tứ giác aehf nội tiếp đường tròn
b) chứng minh góc fec + góc abc=180
c)gọi d là giao điểm của hai đường thẳng ah và bc. chứng minh h là tâm đường tròn nội tiếp tam giác def
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O) và AB < AC. Các đường cao AD, BE, CF của tam giác ABC gặp nhau tại H. Gọi I là giao điểm hai đường thẳng EF và CB. Đường thẳng AI cắt (O) tại M (M khác A).
a. Chứng minh năm điểm A, M, F, H, E cùng nằm trên một đường tròn.
b. Gọi N là trung điểm của BC. Chứng minh ba điểm M, H, N thẳng hàng.
c. Chứng minh BM.AC + AM.BC = AB.MC
Cho tam giác ABC có đường cao AH, biết góc BCA < góc ABC < góc CAB < 900. Gọi đường tròn (O) tâm O là đường tròn ngoại tiếp tam giác ABC. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Gọi D là giao điểm của tia AI với đường tròn (O), biết D khác A. Gọi E và F lần lượt là giao điểm của đường thẳng AH với hai đường thẳng BD và CI, biết E nằm giữa hai điểm B và D.
1) Chứng minh BH = AB.cos góc ABC. Suy ra BC = AB.cos góc ABC + AC.cos góc BCA.
2) Chứng minh bốn điểm B, E, I, F cùng thuộc một đường tròn.
3) Xác định tâm đường tròn ngoại tiếp tam giác IBC.
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(o). hai đường cao CE và AD cắt nhau tại H. Tia BO cắt (o) tại M, gọi I là giao điểm của BM và DE, K là giao điểm của AC và HM. Chứng minh CMID nội tiếp đường tròn
cho tam giác ABC có ba góc nhọn, các đường cao AD,BE,CF gặp nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau tại G .
a) tam giac ABC đồng dạng với tam giác AEF
b)góc BDF = góc CDE
c) H cách đều các cạnh của tam giác DEF