Cho tam giác ABC có trực tâm H, trọng tâm G và O là tâm đường tròn ngoại tiếp. Chứng minh H, O, G thẳng hàng
Cho tam giác ABC ,trực tâm H ; trọng tâm G ; tâm đường tròn ngoại tiếp tam giác O.Chứng minh 3 điểm H, O, G thẳng hàng
Cho tam giác ABC, gọi H, G, O lần lượt là trực tâm, trọng tâm, tâm đường tròn ngoại tiếp của tam giác, M là trung điểm BC
a. CMR : AH = 2* OG
b> CMR : H, G, O thẳng hàng và GH= 2*OG
AI LÀM ĐÚNG MÌNH LIKE CHO
Cho tam giác. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác ABC là trực tâm của tam giác có ba đỉnh là trung điểm ba cạnh của tam giác ABC.
Cho tam giác ABC nhọn, H,G,O lần lượt là trực tâm, trọng tâm và giao của 3 đường trung trực của tam giác ABC, M là trung điểm của BC.
a, Chứng minh rằng OM=1/2 AH
b, E,F lần lượt là trung điểm của AG,HG
chứng minh: tam giác EFG = tam giác MOG
c, Chứng minh: H,G,O thẳng hàng
Cho tam giác ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của tam giác ABC. Chứng minh H,G,O thẳng hàng và HG= 2GO
Cho tam giác ABC trọng tâm G nội tiếp đường tròn tâm O có trực tâm H.
a)Chứng minh: Vectơ GA + Vectơ GB + Vectơ GC = Vectơ 0
b)Chứng minh: O, G, H thẳng hàng.
1, Cho góc nhọn xOy, vẽ đường tròn tâm O bán kính 3 cm cắt Ox ở A, cắt Oy ở B. Vẽ đường tròn tâm A và tâm B cùng bán kính 4 cm cắt nhau tại điểm M nằm trong góc xOy. Chứng minh OM là tia phân giác của góc xOy
2, Cho tam giác ABC có B= AC, gọi M là điểm nằm trong tam giác sao cho MB= MC, H là trung điểm BC. Chứng minh:
a) AM là tia phân giác của góc BAC
b) Ba điểm A, M, H thẳng hàng
c) Đường thảng MH là đường trung trực của đoạn thẳng BC
3, Cho tam giác ABC có AB= AC, góc A= 40 độ, gọi M, N thứ tự là trung điểm AB, AC, biết BN= CM. Tính góc ABC
Trọng tâm , trực tâm và tâm đường tròn ngoại tiếp của tam giác thì thẳng hàng . Hãy chứng minh điều đó .