a) Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
\(\widehat{ABH}=\widehat{DBH}\)(BH là tia phân giác của \(\widehat{ABD}\))
Do đó: ΔBAH=ΔBDH(cạnh huyền-góc nhọn)
b) Ta có: ΔBAH=ΔBDH(cmt)
nên BA=BD(hai cạnh tương ứng) và HA=HD(Hai cạnh tương ứng)
Ta có: BA=BD(cmt)
nên B nằm trên đường trung trực của AD(1)
Ta có: HA=HD(cmt)
nên H nằm trên đường trung trực của AD(2)
Từ (1) và (2) suy ra BH là đường trung trực của AD