b: \(S=\dfrac{1}{2}\cdot4\cdot7\cdot\cos60^0=28\left(cm^2\right)\)
b: \(S=\dfrac{1}{2}\cdot4\cdot7\cdot\cos60^0=28\left(cm^2\right)\)
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
Cho tam giác ABC có góc B = 60 độ , góc C = 50 độ , AC = 35cm . Tính diện tích tam giác ABC
Cho tam giác ABC có góc B= 60 độ, góc C= 50 độ, AC= 35cm. Tính diện tích tam giác ABC
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
Cho tam giác ABC có góc B = 90 độ, góc A = 30 độ, BC = 3cm, đường cao BH
a, Tính AB, AC, góc C
b, Tính diện tích tam giác ABH
c, Tính bán kính đường tròn ngoại tiếp tam giác ABC
d, Tính AG ( G là trọng tâm tam giác ABC )
Cho tam giác ABC có BC = 12 cm , góc B = 60 , góc C = 40 độ . Tính
a, Đường cao CH và cạnh AC
b, Diện tích tam giác ABC
Bài 1 : Cho tam giác ABC nhọn nội tiếp ( O ; R ) , H là trực tâm tam giác ABC . Vẽ đường kính AD của ( O ; R ) . Chứng minh :
a, BH // DC
b, tứ giác BHCD là hình bình hành
c, Gọi giao điểm của BH và AC là E , góc BAC = 60* , góc ACB = 45* , AC = 5 cm . Tính diện tích tam giác ABC
Bài 2 : Cho ( O;R ) dây AB không qua tâm . Vẽ dây AC vuông góc với dây AB tại A , C thuộc ( O ) . Chứng minh :
a, B , O , C thẳng hàng
b, diện tích tâm giác ABC nhỏ hơn hoặc bằng \(R^2\)
Cho tam giác ABC vuông tại A, đường cao AH, góc B = 30 độ, AB = 5cm
a, Tính AC, BC, AH
b, Tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, K là chân các đường vuông góc kẻ từ H xuống AB, AC. Tính diện tích tứ giác AIHK biết BC= 10cm, AH = 4cm.