Kẻ CE | AB.
Ta có \(\Delta ACE\) vuông tại E có góc A = 60o.
\(\Rightarrow AE=\frac{1}{2}AC=\frac{b}{2}\)
\(CE=AC^2-AE^2=\frac{\sqrt{3}}{2}b\)
Xét \(\Delta EBC\) vuông tại E có :
\(EB=c+\frac{b}{2}\)
\(EC=\frac{\sqrt{3}}{2}b\)
\(\Rightarrow a^2=BC^2=EB^2+EC^2=\left(c+\frac{b}{2}\right)^2+\left(\frac{\sqrt{3}}{2}b\right)^2=b^2+c^2+bc\)
Vậy ...
- Vẽ CD vuông góc tia AB tại D.
Ta thấy: \(\widehat{BAC}=120^o\Rightarrow\widehat{CAD}=60^o\left(p.g\right)\)
Tam giác CAD là nửa tam giác đều
\(\Rightarrow AD=\frac{1}{2}AC=\frac{1}{2}AB\)
- Tam giác CDB vuông tại D
\(\Rightarrow BC^2=BD^2+CD^2=BD^2+CD^2...\Rightarrow a^2=\left(AB+AD\right)^2+\left(AC-AD\right)^2\)
\(\Rightarrow AB^2+2AB.BD+AD^2+AC^2-AD^2\Rightarrow a^2=b^2+c^2+2c.AD=b^2+c^2+bc\left(AD=\frac{1}{2}b\right)\)
Áp dụng định lí hàm cos ta có :
\(AC^2=AB^2+AC^2-2AB.AC.\cos B\)
\(\Rightarrow12^2+6^2-2.12.6.\left(-\frac{1}{2}\right)=252\Rightarrow AC=\sqrt{252}\)
Vì BD là phân giác của góc B nên theo tính chất ta có:
\(\frac{AD}{BC}=\frac{AB}{BC}=\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow DC=2AD;AC=\sqrt{252}\Rightarrow AD=\frac{1}{3}\sqrt{252}\)
Áp dụng định lý hàm số COS đồi với tam giác ABD có:
\(AD^2=AB^2+BD^2-2AB.BD.cosB\)
\(\Rightarrow\left(\frac{1}{3}\sqrt{252}\right)^2=6^2.BD^2.\cos B\)
\(\Rightarrow BD^2-6BD+8=0\)
\(\Rightarrow BD=4;BD=2\)
Mà theo điều kiện bài => BD = 4 (cm)
Trên đây là bài giải với ĐK: BD là phân giác trong.
còn nếu BD là phân giác ngoài thì tỉ lệ: \(\frac{AC}{AD}=\frac{AB}{BC}\Rightarrow BD=8\left(cm\right)\)
phần trước mình chỉ giảng thêm nếu như đề có kêu tính nhé!!!!
thg Hạo pytago còn ko vững lại còn đòi cos với tan