Đề này bị thiếu rồi. Phải có thêm điều kiện tam giác ABC vuông hoặc cân nữa mới làm được câu c.
Đề này bị thiếu rồi. Phải có thêm điều kiện tam giác ABC vuông hoặc cân nữa mới làm được câu c.
Cho tam giác ABC, phía ngoài tam giác ta dựng các hình vuông ABDE và ACFG.
a) Chứng minh BG CE = và BG⊥CE .
b) Gọi M, P theo thứ tự là các trung điểm của các đoạn thẳng BC, EG và Q, N theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác MNPQ là hình vuông.
Cho tam giác ABC. Về phía ngoài tam giác dựng các hình vuông ABDE, ACFG. Chứng minh rằng đường cao AH của tam giác ABC đi qua trung điểm M của đoạn thẳng EG.
Cho tam giác ABC, phía ngoài tam giác ta dựng các hình vuông ABDE và ACFG.
a) Chứng minh BG=CEvà BG⊥CE .
b) Gọi M, P theo thứ tự là các trung điểm của các đoạn thẳng BC, EG và Q, N theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác MNPQ là hình vuông.
Cho tam giác ABC vuông ở A, AH là đường cao. Vẽ về phía ngoài tam giác ABC hai hình vuông ABDE và ACFG. Gọi M và N lần lượt là chân các đường vuông góc hạ từ D và F đến BC. CMR: Đường thẳng AH đi qua trung điểm của đoạn EG
cho tam giác ABC vuông và AH là đường cao ứng với cạnh huyền . Vẽ về phía ngoại tam giác hai hình vuông ABDE và ACFG
a) gọi M,N là chân các đường vuông góc hạ từ D và F đến BC. Chứng minh DM+FN=BC
b) cm 3 điểm D,A,F thằng hàng
c) cm rằng AH đi qua trung điểm của đoạn thẳng EG
Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 9: Cho tam giác ABC, trung tuyến AM. Gọi D là trung điểm của AB, M’ là
điểm đối xứng với M qua D.
a) Chứng minh điểm M’ dối xứng với M qua AB.
b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c) Cho BC = 4cm, tính chu vi tứ giác AM’BM. Tam giác ABC thỏa mãn điều
kiện gì để tứ giác AEBM là hình vuông.
Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 11: Cho tam giác ABC vuông tại A. Kẻ đường cao AH, dựng hình chữ nhật
AHBD và AHCE. Gọi P, Q theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng.
b) PQ là trung trực của đoạn thẳng AH.
c) Ba điểm D, P, H thẳng hàng.
d) DH vuông góc EH.
Bài 12: Cho tam giác ABC phía ngoài tam giác, ta dựng các hình vuông ABDE và
ACFG.
a) Chứng minh BG = CE Va BG vuông góc CE.
b) Gọi M, N theo thứ tự là các trung điểm của các đường thẳng BC, EG và Q, N
theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác
MNPQ là hình vuông.
cho tam giác abc. Vẽ về phía ngoài của tam giác các hình vuông abde , acfg.
a) chứng minh đường cao ah của tam giác abc đi qua trung điểm m của đoạn eg
b) cmr nếu góc a<90 độ và n là trung điểm của df thì tam giác nbc vuông cân tại đỉnh n
cho tam giac ABC vuong taiA , cạnh BC cố định và AH vuông góc với BC tại H vẽ về phía ngoài tam giác ABC hai hình vuông ABDE và ACFG. Gọi M,N là chân các đường vuông góc kẻ từ D và F đến BC. Chứng minh DM+FN=BC
lấy 2 cạnh AB,AC của tam giác ABC làm cạch vẽ ra ngoài tam giác các hình vuông ABDE và ACFG. gọi I là đỉnh thứ 4 của hình bình hành EAGI.
a) chứng minh tam giác BAC=AEI
b) gọi AH là đường cao của tam giác ABC. chứng minh I thuộc AH
c) chứng minh CD vuông góc với BD và CD=BI
d) chứng minh 3 dường thẳng CD,BF,AH đồng quy