a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}=2\left(cm\right)\)
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}=2\left(cm\right)\)
Cho tam giác ABC có BC = 4cm, các đường trung tuyến BD và CE cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của GB, GC.
1/ Tính độ dài ED 2/ Chứng minh DE//IK 3/ Chứng minh tứ giác EDKI là hình bình hành.
mn giúp mình với ạ
Cho tam giác ABC có BC=4, các đường trung tuyến BD và CE cắt nhau tại G.Gọi I,K theo thứ tự là trung điểm của GB,GC
1/tính độ dài ED
2/chứng minh tứ giác EDKI là hình bình hành
Cho tam giác ABC có BC=4, các đường trung tuyến BD và CE cắt nhau tại G.Gọi I,K theo thứ tự là trung điểm của GB,GC
1/tính độ dài ED
2/chứng minh tứ giác EDKI là hình bình hành
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE= IK.
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE=IK.
cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G, gọi I,K lần lượt là trung điểm của GB,GC. Chứng minh DE//IK và DE=IK
Bài 4:
Cho tam giác ABC, các đường trung tuyến BD,CE cắt nhau ở G. Gọi I,K theo thứ tự là trung điểm GB, GC. Chứng minh:
a) Tứ giác BEDC là hình thang
b) DE // IK và DE=IK
Cho tam giác ABC, các đường trung tuyến BD, CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC. Chứng minh rằng tứ giác DEHK là hình bình hành.
Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK. diện tích DEI= diện tích DIK