Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khiêm Nguyễn Gia

Cho tam giác \(ABC\) có \(BC=15\) \(cm\)\(AC=20\) \(cm\)\(AB=25\) \(cm\).
\(a\). Tính độ dài đường cao \(CH\) của tam giác \(ABC\).
\(b\). Gọi \(CD\) là đường phân giác của tam giác \(ACH\). Chứng minh tam giác \(BCD\) cân.
\(c\). Chứng minh: \(BC^2+CD^2+BD^2=3CH^2+2BH^2+DH^2\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2023 lúc 13:47

a: Xét ΔCAB có CA^2+CB^2=AB^2

nên ΔCAB vuông tại C

Xét ΔCAB vuông tại C có CH là đường cao

nên CH*AB=CA*CB

=>CH*25=15*20=300

=>CH=12(cm)

b: góc BCD+góc ACD=90 độ

góc BDC+góc HCD=90 độ

mà góc ACD=góc HCD

nên góc BCD=góc BDC

=>ΔBDC cân tại B

c: BC^2+BD^2+CD^2

=BC^2+BC^2+CD^2

=2BC^2+CD^2

=2(BH^2+HC^2)+CH^2+HD^2

=2BH^2+3CH^2+DH^2