Vì ∆ ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.
Vì ∆ ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.
Cho tam giác ABC có ba góc nhọn. Vẽ các đường cao AI, BK, CL của tam giác ấy. Gọi H là giao điểm của các đường cao vừa vẽ. Chứng minh ∠ LBH, ∠ LIH, ∠ KIH, và ∠ KCH là 4 góc bằng nhau.
Cho tam giác ABC có ba góc nhọn. Vẽ các đường cao AI, BK, CL của tam giác ấy. Gọi H là giao điểm của các đường cao vừa vẽ. Chỉ ra các tứ giác nội tiếp có đỉnh lấy trong số các điểm A, B, C, H, I, K, L
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn (o) vẽ các đường cao be,cf của tam giác ấy gọi h là giao điểm của be và cf kẻ đg kính bk của (o)
a) Chứng minh tứ giác BCEF là tứ giác nội tiếp
b) chứng minh tứ giác AHCK là hình bình hành
c)đường tròn đường kính AC cắt BE ở M đường tròn đường kính AB cặt CF ở N.chứng minh AM=AN
cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp đường tròn (o). các đường cao AD,BE của tam giác ABC cắt nhau tại H
a) c/m tứ giác ABDE nội tiếp
b) trong đường tròn (o) vẽ đường kính AK gọi N là giao điểm của AD vad BK chứng minh EM/DN = EH/DH
c) DE cắt MN tại I chứng minh IM=IN
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Vẽ các
đường cao BE, CF của tam giác ấy. Gọi H là giao điểm của BE và CF. Kẻ đường kính
BK của (O) .
a) Chứng minh tứ giác BCEF là tứ giác nội tiếp.
b) Chứng minh tứ giâc AHCK là mình bình hành.
c) Đường tròn đường kính AC cắt BE ở M, đường tròn đường kính AB cặt CF ở N.
Chứng minh AM =AN .
cho tam giác abc có ba góc nhọn nội tiếp ( O ).gọi H là giao điểm của ba đường cao AD,BE,CF của tam giác ABC.
a) chứng minh rằng AEHF là tứ giác nội tiếp
b) vẽ đường kính AK của ( O ). chứng minh AB.AC=AK.AD
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (o).vẽ các đường cao BE ,CF của tam giác ấy.Gọi H là giao điểm của BE và CF.Kẻ đường kính BK của (O).chunwgs minh tứ giác AHCK là hình bình hành
Cho tam giác ABC (AB < AC) có 3 góc nhọn nội tiếp trong đường tròn tâm O bán kính R. Gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC
a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn
b) Vẽ đường cao AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau .Suy ra AB.AC=2R.AD
Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.
1. Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.
2. Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau.
3. Chứng minh rằng OC vuông góc với DE.