Cho tam giác ABC có ba góc nhọn nội tiếp (O;R) đường cao AH của tam giác cắt đường tròn tâm O tại D . Từ D vẽ đường thẳng song song với BC cắt đường tròn O tại E
a CMR O, A,E thẳng hàng
b, CMR BCED thang cân
c, Tính \(AB^2+AC^2+CD^2+BD^2\)
Giả sử ABC là tam giác nhọn nội tiếp đường tròn (O). Đường cao AH cắt đường tròn (O) tại D. Kẻ đường kính AE của đường tròn (O). Chứng minh:
a, BC song song với DE
b, Tứ giác BCED là hình thang cân
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O;R). Đường cao AK của tam giác ABC cắt đường tròn (O) tại D (khác A). Từ D vẽ đường thẳng song song BC cắt đường tròn (O) tại điểm E (khác D).
a) Chứng minh KA.KD=KB.KC .
b) Trên đoạn AK lấy điểm H sao cho K là trung điểm của HD.Chứng minh H là trực tâm của tam giác ABC.
c) Chứng minh ba điểm A,O,E thẳng hàng. Tính \(AB^2+BC^2+DC^2+CA^2\) theo R.
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho tam giác ABC có ba góc nhọn(AB<AC) nội tiếp đường tròn (O) có hai đường cao BF và CE cắt nhau tại H, tia AH cắt cắt cạnh BC tại D Gọi S là giao điểm của hai đường thẳng BC và EF. Đoạn thẳng SA cắt (O) tại M. Qua B vẽ đường thẳng song song với AC cắt đường thẳng SA tại K, trên tia đối của tia BK lấy điểm L sao cho B là trung điểm của KL. Chứng minh ba điểm A, D, L thẳng hàng.
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho tam giác ABC nội tiếp đường tròn tâm O, đường cao AH cắt (O) tại D. Kẻ đường kính AE.CMR: a, BCsong song DE b, Tứ giác BCED la hình thang cân
cho tam giác ABC có 3 góc nhọn, trực tâm H, vẽ hình bình hành AHCD đường thẳng đi qua D va song song với BC cắt đoạn thẳng AH tại E.
a/ cmr: ABCDE cùng thuộc 1 đường tròn.
b/ góc BAE = góc DAC.
C/ gọi O là tâm đường tròn ngoại tiếp tam giác ABC, M là trung điểm của BC đường thẳng AM cắt OH tại G. cm G là trọng tâm của tam giác ABC.
d/ gia sư OD = a, hãy tính độ dài đường tròn ngoại tiếp tam giác BHC qua A.
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R). Đường cao AA’ cắt (O;R) tại D (khác A).Từ D vẽ đường thẳng song song với BC cắt (O) tại E (khác D).
a) Chứng minh tứ giác BCED là một hình thang cân.
b) Chứng minh \(A'A.A'D=A'B.A'C\)
c) Trên đoạn AA’ lấy điểm H sao cho A’ là trung điểm của HD. Chứng minh H là trực tâm của tam giác ABC.
d) Chứng minh 3 điểm A,O,E thẳng hàng. Tính \(AB^2+BD^2+DC^2+CA^2\) theo R.