Cho tam giác ABC có 3 góc nhọn nội tiếp đường tron (O;R) 2 đường cao AD và BE cắt nhau tại I (D ∈ BC; E ∈ AC)
a) Chứng minh tứ giác AEDB nội tếp
b) Chứng minh hệ thức CE.CA=CD.CB
Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB ^ , ABC ^ , BCA ^ đều là góc nhọn. Gọi M là trung điểm của đoạn AH.
1) Chứng minh tứ giác AEHF nội tiếp đường tròn.
2) Chứng minh CE.CA = CD.CB.
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O(AB<AC), có ba đường cao AD, BE, CF cắt nhau tại H ( D thuộc BC, E thuộc AC, F thuộc AB)
a) Chứng minh tứ giác BFEC và tứ giác BFHD là các tứ giác nội tiếp
b) Vẽ đường kính AK của (O). Chứng minh AB.AC=AD.AK
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt nhau tại đường tròn (O) lần lượt tại M, N, P.
Chứng minh rằng:
1: Tứ giác CEHD, nội tiếp.
2: Bốn điểm B, C, E, F cùng nằm trên một đường tròn
3: AE. AC = AH. AD ; AD. BC = BE. AC
4: H và M đối xứng nhau qua BC.
5: Xác định tâm đường tròn nội tiếp tam giác DEF.
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB<AC), có ba đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB)
a) Chứng minh các tứ giác BFEC và tứ giác BFHD là các tứ giác nội tiếp
b) Vẽ đường kính AK của (O). Chứng minh AB.AC=AD.AK
Câu 5 (3,0 điểm). Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao
AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh các tứ giác AEHF, BFEC nội tiếp đường tròn.
b) Đường thẳng AO cắt đường tròn tâm O tại điểm K khác điểm A. Gọi I là giao điểm của
hai đường thẳng HK và BC. Chứng minh I là trung điểm của đoạn thẳng BC.
c, tinh AH/AD + BH/BE + CH/CF =2
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R),hai đường cao AD và BE cắt nhau tại H (\(D\in BC,E\in AC,AB< AC\))
a. Chứng minh các tứ giác AEDB và CDHE nội tiếp
b. Chứng minh OC vuông góc DE
c. CH cắt AB tại F. C/m:\(AH.AD+BH.BE+CH.CF=\frac{AB^2+AC^2+BC^2}{2}\)
d. Đường phân giác AN của góc BAC cắt BC tại N, cắt (O) tại K (K khác A).Gọi I là tâm đường tròn ngoại tiếp tam giác CAN .C/m: OK và CI cắt nhau tại điểm thuộc (O).
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB<AC) 3 đường cao AD,BE,CF cắt nhau tại H
a,CM tứ giác BFEC nội tiếp và xác định tâm I
b,Đường thẳng EF cắt đường thẳng BC tại K . CM KF.KE=KB.KC
c,AK cắt (O) tại M. CM MFEA nội tiếp
jup mình vs ạ
cho tam giác ABC có ba góc nhọn ,AB>AC nội tiếp đường tròn tâm (O,R) hai đường cao AD,CF cắt nhau tại H
a) CM tứ giác BDHF nội tiếp ? xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt