Cho tam giác ABC có ba góc nhọn (AB<AC). Đường tròn tâm O đường kính BC cắt các cạnh AB, AC lần lượt tại D, E. Gọi H là giao điểm của BE và CD , F là giao điểm của AH và BC. a) Tính số đo góc BDC và chứng minh AF vuông tại BC b) Gọi K là trung điểm của AH. Chứng minh KE là tiếp tuyến của đường tròn (O) c) Gọi N là giao điểm của đoạn thẳng AF và đường tròn (O). Chứng minh FN bình-FH bình=2FH.HK
(Mong mọi người giúp mình ạ)
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét ΔABC có
BE là đường cao
CF là đường cao
BE cắt CF tại H
Do đó: AH⊥BC
hay AF⊥BC