Cho ∆ABC có 3 góc nhọn (AB < AC). Đường tròn đường kính BC cắt AB, AC theo thứ tự tại E và F. Biết BF cắt CE tại H và AH cắt BC tại D a) C/M tứ giác BEFC nội tiếp và AH vuông góc với BC b) C/M AE.AB = AF.AC c) Gọi O là tâm đường tròn ngoại tiếp ∆ABC và K là trung điểm của BC. Tính tỉ số OK/OC khi tứ giác BHOC nội tiếp Giúp mik câu c vs ạ
Cho tam giác ABC có ba góc nhọn (AB<AC). đtr đường kính BC cắt AB, AC theo thứ tự tại E và F. Biết BF cắt CE tại H và AH cắt BC tại D.
1/ CM: tứ giác BEFC nội tiếp
2/ CM: AE.AB=AF.AC
3/ Gọi O là tâm đtr ngoại tiếp tam giác ABC và K là trung điểm của BC. Tính tỉ số OK/BC khi tứ giác BHOC nội tiếp
4/ Cho HF=3cm, HB=4cm, CE=8cm và HC>HE. Tính HC
Cho tam giác ABC nhọn vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và F. BF cắt CE tại H. a) cm AH vuông góc với BC; b) cm AE.AB = AF.AC c) Cm góc AEF = góc ACB ; d) Cm 4 điểm A, E, H, F cùng thuộc 1 đường tròn
cho tam giác ABC nhọn ( AB<AC), đường tròn đường kính BC cắt AB, AC lần lược tại E và F. BF cắt CE tại H.
a) chứng minh A,E, H, F thuộc 1 đường tròn
b) chứng minh AH vuông góc BC và BD.DC =DH.DA
c) tiếp tuyến tại E, F của đường tròn cắt nhau taị I . CM: A,I, D thẳng hàng
d) EF cắt BC tại T. CMR: BD.TC=TB.DC
Cho tam giác ABC nhọn (AB < AC) vẽ đường tròn tâm O có đường kính BC cắt hai cạnh AB và AC theo thứ tự tại E và F ,gọi H là giao điểm của BE và CF, AH cắt BC tại D. Gọi I là trung điểm AH
a. Chứng minh tứ giác AEHF nội tiếp đường tròn tâm I và AD vuông góc BC
b. Chứng minh tứ giác OEIF nội tiếp và 5 điểm O, D, E, I, F cùng thuộc một đường tròn
C. cho biết BC = 6 cm và góc A = 60 độ Tính độ dài OI
Cho tam giác ABC có 3 góc nhọn. Đường tròn tâm O đường kính BC cắt AB tại E, cắt AC tại F. Các tia BF cắt CE cắt nhau tại H. CMR:
a) AH vuông góc với BC
b) Gọi K là giao điểm của AH và BC. CMR: FB là phân giác của góc EFK
c) Gọi M là trung điểm của BH. CMR: tứ giác EMKF nt
Cho tam giác ABC nhọn ( AB < AC ) .Đường tròn tâm O có đường kính BC cắt AB và AC lần lượt tại E và D . Gọi H là giáo điểm của CE và BD .
a ) AH cắt BC tại F : CMR AF vuông góc với BC
b) kẻ HK ⊥ OA tại K .C/m A,D,K,E cùng thuộc 1 đường tròn
CM CÂU C THÔI NHÁ
cho tam giác abc nhọn, đường tròn (O) đường kính bc cắt ab, ac lần lượt tại E và f. gọi h là giao điểm của bf và ce, ah cắt bc tại d.
a) chứng minh ah vuông góc với bc và tứ giác aehf nội tiếp, xác định tâm K của đường tròn này.
b) chứng minh ke là tiếp tuyến của đường tròn (O) và năm điểm o, d, e, k, f cùng thuộc một đường tròn
c) qua h vẽ đường thẳng vuông góc ho cắt ab, ac lần lượt tại m và n. chứng minh hm=hn
cho tam giác ABc nhọn. Đường tròn bán kính BC cắt AB,AC lần lượt tại E và F ,BF cắt EC tại H . Tia AH cắt đường thẳng BC tại N cm tứ giác HFCN nội tiếp cm FB là phân giác góc EFN giả sử AH bằng BC tính góc BAC của tam giác ABC