Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lưu huỳnh ngọc

Cho tam giác ABC có AD là phân giác của góc A qua d kẻ đường thẳng song song với AB cắt AC tại E cho AB = 12cm , AC = 20cm BC = 28 cm . Tính BD , DC, DE

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 13:29

Xét ΔBAC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{12}=\dfrac{CD}{20}\)

mà BD+CD=28cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{12}=\dfrac{CD}{20}=\dfrac{BD+CD}{12+20}=\dfrac{28}{32}=\dfrac{7}{8}\)

Do đó: BD=10,5cm; CD=17,5cm

Xét ΔBAC có 

DE//AB

nên \(\dfrac{DE}{AB}=\dfrac{CD}{BC}\)

\(\Leftrightarrow DE=\dfrac{17.5}{28}\cdot12=7.5\left(cm\right)\)